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PREFACE

Abstract

The past few years have seen a growing interest in the application of three-dimensional Image 77

processing. With the increasing demand for 3-D spatial information for tasks of passive navigation,
YL-~((in~e~-,WO~tlfiiW~ee-SO&k automatic 8urveitlaflCejffetinde.so~rt4O7JOP4eriaI carte graphi)

z....(Ke/y-.fh'4•.�fPW on-1*) and inspection in industrial automation, the importance of effective
stereo analysis has been made quite clear. A particular challenge in this area is to provide reliable and
accurat•e de.ptb da4t for input, to object or terrain modelling systems, (such as ACRONYM [Brooks
1981a]Y-This report describes an algorithm rfo-u-"sTer-o senjling-'7r is founded on an edge-based
line-by-line stereo correspondence scheme - one which provides this three-dimensional analysis in a
fast, robust, and parallel implementable way. Its processing consists of extracting edge descriptions
of a pair of images, linking these edges to their nearest neighbors to obtain the connectivity structure
of the images, matching the edge descriptions on the basis of local edge measures, and cooperative-y
removing those edge pairings formed by the correspondence process which violate the connectivity
structure of the two images. A further matching process, asing a technique similar to that used for
the edges, is done on the image intensity values within intervals defined by the edge correspondence.
The result of the processing is a full image array depth map of the scene viewed.

Organization of thi. Report

Chapter 1 discusses some of the psychological and neurophysiological aspects of the human vision .
system that have had an impact on this work, and within this context lays a basis for the direction
of the research carried out. The fact that the research is being developed for implementation on a .:
sequential machine, rather than a parallel mechanism as in the human system, imposes (or allows,
depending upon the particular benefits/deficiencies perceived) certain constraints on the techniques
used. Despite this distinction in the mechanisms available, the philosophy of the approach taken
here has, at an informational level, strong parallels to the human system.

Chapter 2 outlines the main differences between the two principal techniques for binoeulrr stereo
analysis -- those based on cross-correlation of image intensity values, and those working with image %
intensity contours, or edges. The functioning of the pr'ncipal exemplar systems from each of these
areas is described, and comments on these provide a background for specifying the goals of this
research. Although providing a good sulmmary of the state-of-the-art in stereo matching, Sections
2.1 and 2.2 rather go on, and a casual reader, looking for the meat, would be best advised to slap
them. The chapter ends with a summary overview of the composite algorithm developed in this
research. The algorithm, as the title of this report indicates, incorporates both edge-based and
intensity- based analyses.

Chapter 3 introduces the principal unit of the analysis, directional zero-crossings in the second
difference of image intensity, and identifies the particular geometric and photometric constraints
that are integral to the analysis.

Chapter 4, dealing with the statistical measures used throughout the analysis, should be read
in conjunction with Chapter 5, which discusses the Viterbi correspondence algorithm and the

L"
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modification to it developed for the matching required here. The two chapters work together to
define the matching process, with the first giving the hairy details of the decision metrics for the
various correspondence processes, and the second showing the way these enter Into the computation.
Chapter 5 ends with a full exampl, of a single line-pair edge and intensity correlation.

Chapter 6 presents a cooperative algorithm which enforces global consistency on the tentative edge
matches proposed by the preliminary analysis. Its presumption Is that connectivity In the two-
dimensional projection of a scene Is Indicative of continuity in the, 3-space of the scene.

Chapter 7 provides two examples of the full processing of the algorithm - the first on a synthetic
stereo pair of an urban scene, the second on real imagery of natural terrain. The success of the
stereo matching algorithm on these images Indicates that it Is a powerful technique with general
applicability; its failures suggest areas for future refinement.

Chapter 8 discusses the contributions of this research to the field of computer stereo vision, and
highlights the areas where its application would bring immediate benefit.

Viewing the FAgres

All of the paired figures In this report are drawn for cross-eyed stereo fusion. This means that to
obtain the proper perception you must have the left eye see the right figure and the right eye see
the left figure. The difficulty with so configuring your eyes Is that you have probably never In your
life before consciously decoupled your focus from vergence. Your eyes may be aimed in the proper
directions, but since this attitude corresponds to the normal eye position for examining the tip of
your nose, the focus is set at about that distance. For stereoscopic fuoion in this sitiration one must
consciously vary the focus while maintaining the fixation until the desired image is seen clearly. It
will take a while if you haven't done it before, perhaps a half hour for a d.idicated attempt, although
once attained you will surely (it is my hope) find the effort worthwhile.

The choices possible in stereoscopic presentation are divided between those requiring special viewing
aids, these demand little of the viewer, and free fusion techniques, which require no. aiding devices but
at the cost of considerable initial effort for the viewer. Anaglyphic depictions, where the two images
are presented in complementary colours and must be viewed with suitably chosen complementary
filters, are likely the most familiar to you. Another technique for slide/film presentation is to polarize
oppnsitely the light passing through the two images and provide polarized filters to the viewers to
ensure delivery of the proper image to the proper eye. Neither of these techniques is suitable for
standard xerographic reproduction.

The technique chosen here, cross-eyed stereo fusion has one principal advantage over the other form
of unassisted fusion, often called wll-eeyed fusion or simply free fusion. In wall-eyed fusion the
figures are presented so that to obtain the percept the left eye must be directed toward the left
image, and the right eye be directed toward the right image. Since only in exceptional (and then
likely damaged) systems can the eyes actually diverge, the separation between the centers of the two
images cannot, in general, exceed the interpupilary distance of roughly 7 centimeters. This means
that the figures can be no wider than about 7 centimeters - a clear handicap when using limited
resolution graphic devices. There is no such limitation for cross-eyed fusion. Its advantage is then
clear - resolution of depictions can be much greater and figures may be projected onto distant
screens for audience viewing. (Oddly enough, the stereoscopic perceptions do differ in these two
cases, with wall-eyed fusion giving a greater sensation of relative depth for the equivalent monocular
percepts. Vergence, not just observed disparity, affects the judgements of stereopsis.)
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Figures 1 and 2 contain exercises which may be of some help in enabling you to develop the skill
(skill?) of cross-eyed stereoscopic fusion. When working with them, remember to have the left eye
fixating on the right figure and the right eye fixating on the left figure. The captions to figures give
suggestions for their viewing. If you can find a pair of 2- or 3-power telescopes and aim them cross-

L%. eyed at the appropriate images, this will greatly ease the task of obtaining stereo fusion. By reducing
the effective focal distance, the lenses will compensate for the vergence/focus coupling conflict, andshould allow the images to be more readily fused. But it is better to avoid reliance on such an aid

you may find yourself somewhere, sometime, wishing to fuse two disparate images and have your
aid nowhere at hand. Unequipped, you will have missed your chance! (This generalizes.) Figure 2-5
seems to be a good example for practise in cross-eyed fusion.

II

First, fixate on the two circles at the top (if necessary, keeping the lower circles from
distracting you by covering them wituh a piece of paper). When you have superpositioned
these so that the left eye and right eye together see a single (probably blurred) blob, try
to focus the eyes to make the images clear. If you can do this (this is the single biggest
problem in fusion - controlling the focus), then slowly move your gaze down toward the
next pair of circles (following the connecting lines). The percept should be of continually
progressing circles, forming a tapered cylinder (an interesting visual illusion in Itself).

Figure 1
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This figure may be more difficult to fuse. Begin by bringing the outer squares into
alignment - the top line flash and lower left and upper right circles may be helpful In
controlling the vergence movements to bring the images together. Once superpositioned,
work on obtaining clear focus, perhaps by concentrating on one of the corner circles or
the upper flash. Once you have this, follow the box perimeter around to the lower line
joining the box to the diamond, follow the diamond perimeter to the circle, and then on
to the cross. You should see the cross lying farthest away, and "he framing box nearest.

Figure 2

Here is yet another trick to try if neither of these figures seems fusable even after hours of hopeless
staring. Cut a window about 1.75 inches square from a piece of cardboard. Hold the images about
15 inches away from your nose, the card about 5, and line up the two images through the hole so that
the left eye sees all of the right image and the right eye sees all of the left image. If you concentrate
on looking at the frame of the window (not at the scene beyond quite yet!) you will get a vague
impression of the intended depth. Work at keeping your regard on the frame while gradually letting
your focus slip through the two windows to the images below. It shouldn't be too long before you
are able to separate the focus from the vergence and see the three-dimensional scene below with

whatever your cu.itomary clarity.



Chapter I 1

CONTEXT OF THE RESEARCH

Let me draw your attention, at the beginning of this discussion, to the phenomenon of man's .t

stereoscopic binocular vision -- the fusion of the left and right eyes' images into a coherent perception
of three-dimensional space. This single and immediate perception of the dimensionality of our world I'

is a striking achievement. To that minority among us lacking binocular stereoscopic perception (at 4
least 3%, while as many as 15% may have stereopsis deficiencies (Bishop 1975], [Richards 1970])), It
is an experience impossible to describe by analigy. It is unique in character, likened in its vividness
to the perception of colour. This visual system, called "the most intricate structure in the known
universe" ([Julesz 1976]), hts been one of the principal contributors to our species' intellectual and - -

sociological development. An increasing Jominance over time of the visual sense has, through its
interaction with manipulative skills, enabled us to become the best living tool users, constructors
who have the ability to mold the world around us to our needs. .,

An important consideration in the implementation of a machine vision system is the impact ,-'1
knowledge of this marvellous human system should have on the machine system's design. To know ¾

something of its development, functioning, and mechanisms would seem to be a prerequisite for a 0
proper attempt at developing something similar for a machine (be the similarity in mechanism or
effect).

,1

1.1 The Stereopsi. Process in Man .4

In the course of primate mammalian evolution there has been a gradual movement of the eyes from a j
lateral-looking attitude to a frontal binocular position. This transformation enabled a considerable
overlap in the visual fields of the two eyes - a necessity for stereo vision - and facilitated a precisely '..
registered coordination of binocular eye movement. The development of a centrally located high
precision fovea greatly aided this evolution of coordinated eye movement. These changes, and the ,

-4-neurophysiological developments in the cortex accompanying them4 were also correlated with the -.

development of hand-eye coordination. The adoption of the upright attitude freed the hands from
their previous role in postural support, and enabled the development of manipulative skills under
visual (especially foveal) guidance.

Precision in depth determination is one of the principal advantages of stereopsis - it allows accurate -.
hand-eye functioning and visuai tracking. Our stereo acuity has been estimated as being between 14
and 40 seconds of arc for normal bifoveolar binocular vision ([Bishop 1975]); the binocular luminance
ýhreshold has been found to be as much as a factor of V¶ lower than the monocular threshold, and
visual acuity increases accordingly for binocular over monocular vision. These observations bear
out the statistical improvement expected from using two independent measuring processes, the two
eyes, rather than one. Beyond the statistical advantages are those of more practical importance - T,
stereopsis enabled us predators to "see through" the camouflage by which hunted animals sought to
blend in with their surroundings 5 (monocular camouflage fails to a stereo perceiver in the range over

4 development of a partial decussation at the optic chiasma and the organization in the visual cortex, having cor-
responding fibers from the two retinas synapsing on the same cells in the striate cortex 0
5Our prey had the complementary advantage of nearly complete peripheral (3600) vision to see us coming.

- ,"-. ,: , , -- . '.. a . L " , _ . - . ... . - - - - - - - - -- .-...
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which stereo is effective - theoretically, up to about 500 meters8 ([Bishop 1975])), and It enables us
a perception of solidness in our visual worlds Isomorphic to the solidness of our physical world.

The eyes are positioned about 7 centimeters apart. in the head, observing the external world through
central projections from two slightly differing viewpoints. This difference in position causes varying
relative lateral displacements, or disparities, of the detail in the two images projecting onto the
retinas. It is these disparities, the differences in horizontal position of corresponding points on the
two retinas (varying directly with the distance from the point of fixation), which provide the essential
data for binocular depth perception. The fusion of the two retinal images into a single perception of
solid 3-space, the process of binocular stereoscopic vision, is termed stereopsis. The subject of this
report is an automating of this process of stereopsis.

1.2 Computer Vision

The involvement of computer scientists with visual processing is in the use of computers as sensory
data processors for observing and manipulating the environment. Generally, the interest is in bring-
iu, the control advantages of visual sensing to the tasl:s of robotic manipulation and autonomous
navigation. It m',ght be thought that mechanisms chosen for this would be selected more on their
algorithmic tractibility. than on their relevance to neurophysiological or psychological theories of
human perception. This is true to an extent. We have access to neither the parallel processing
biological mechanism that resides in man nor an adequate definition of its functioniag, and are
forced largely to rely on sequential machines for the implementation, and introspective insights for
guidance in our algorithms. Still, human'visual functioning is our principal source of observations on
the process of three-dimensional vision, and it supplies the best paradigm we have for a seeing sys-
tem. Clearly, where insights from human visual processing would add to the robustness or flexibility
of the sysuem, our machine should have them. On a more pragmatic note, it makes excellent sense
to pay attention to human visual functioning, for it provides the best of insurance; the problem is
solvable, and the human system does it.

In the present work we do not aim explicitly for our algorithmic system to have biological feasibility,
but we do wish to have it parallel the highly effective functioning of the human system - a
functioning where the input is passively sensed (although perhaps actively pursued) visible light,
and the result is an understanding of the physical environment.

There will be obvious hindrances to our work - the computers available are only serial devices
r. (at the moment), and tie mechanisms of sight are Uittle enough agreed upon by neurophysiologists

and perceptual psychologists; neither our devices nor our algorithms can yet approach the power
and flexibility of the human system. But the goal is there, to develop mechanized vision. Although
our computing devices are not ideal for the job, they are adequate for the research; although our
understanding of the process is partial, we have sufficient empirl.eal observation to allow us reasonable
insight into the operation of our sight.

On this last point, it is interesting to note that computer vision is, increasingly, developing a
symbiotic relationship with studies in human perception:

9 to implement a theory requires complete and detailed specification of the process -

this invokes a rigour at the level of the definition,
* * as an experimental tool, the computer stimulates insights which improve the theory.

6 the greatest distance at which an object can Just be detected as nearer than an object at infinity

0'
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So, while machine vision researchers look to the perceptual psychologý and neurophysiology litera-
ture for insight into mechanisms and measures of adequacy for their algorithms, perceptual theorists
turn to computers as tools for their studies and riains for instantiating and testing their theories
([Marr 19761, [Marr 1977], [Mayhew 1981]).

1.3 Cc•siderations for a Stereopsis Process

1.8.1 - Possible rnei ha.,,ixrns of human stereopasi

What is involved in human vision in poing from the sensory stimulation of the two separate retinas
to achievement of the depth understanding of stereopsis? Perhaps one or some combination of the
following:

1) the independent monocular recognition of each eye's contents, and a subsequent
matching of recognized items across eyes for distance determination.

2) a less knowledge-intensive matching process, whereby features (perhaps 'blobs')
characterized by uniformity of some property are extracted from each eye's image
and compared across eyes (without any familiarity with the particular feature.).

3) extraction of some information-specific abstraction from the images of the two eyes
(for example, zero-crossings in the second difference of a laterally inhibited signal),

and the matching of these sampled items across eyes.
4) matching of individuai brightness levels over the entire images of b6th eyes.

The distinctions between these lie in the level of abstraction attained. The actual monocular
recognition of scene content is a great abstraction - image brightness values are clustered to define
shapes which are representable as symbolic descriptors - whereas the matching of brightness levels,
being little more than photon counting, can hardly be considered as abstraction at all.

The first suggestion above requires the process to have a monocular familiarity with everything in the
scene, implies that whatever it is, it can be recognized when viewed from any perspective, and grants
of the monocular processing a quite remarkable capacity at separating objects from each other and
from their background. With this scenario, the eyes work independently up to the point of placing
the depth component on the object's position. Alone, this is not a very satisfactory explanation of
stereo perception. It presupposes an unsubstantiated inner eye projection system for mapping 3-D
known forms to percepts and, most significantly, provides no mechanism for the learning of new
objects. It is contradicted by known characteristics of the human visual system's processing in its
sufficiency, by our ability to fuse random-dot stereograms ([Julesz 1971]), and in its precision, by
the accuracy and continuity of our depth perception. It is presented, here as a straw man, merely to
focus on this extreme of stereopsis possibilities.

The second suggestion is an improvement over the first, in that it demands no monocular object
recognition, yet it still hinges on the ability to extract information that is meaningful across images.
Considered as the sole process for stereopsis, it has inadequacies similar to those of the first
suggestion.

Implicit in the discussion of suggestion 2 was that it dealt with a uniformity measure on the imagery.
Consider- suggestion 3 as involving the processing of a discontinuity measure. The sort of information-
specific abstraction suggested can vary from individual edge elements to extended contours, perhaps
delineating the outline of some shape (see [Wilson 1978a, Wilson 1978b] for a discussion of spatial
frequency filtering in human vision).
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Suggestions 3 and 4 are similar to each other in that neither presupposes a semantic processing of
the retinal images and both involve extensive cross-correlation on a great quantity cf data. Human
stereopsis supports approach 3 more strongly ([Wilson 1978a], [Marr 1979], [Schumer 1979J), while
not excluding the possibility of interaction with an intensity matching process7 as suggested in 4.
For a machine implementation, questions of computational cost, viewing constraints, reliability, and
desired accuracy will affect the utility of one over the other, and this will be discussed further later.

Observations of visual processing make it evident that, when impoverished, human perception can
rely upon most any of the above techniques for depth determination.8 None of them is sufficient
for visual understanding; beyond each must lie a process bringing a unity of interpretation to the
measures. Monocular processing can aid stereopsis by establishing a context or vergence setting
([Saye 1975]), and can enable fusion despite conflicting evidence at a local level (as demonstrated
by Helmholtz (1906) with positive image/negative image fusion (see page 157 of [Juless 1971])).
Binocular stereoscopic processing can reveal depth when no cues are available to the eyes in isolation.
Psychophysical evidence ([Gregory 1977]) suggests that the monocular and "cyclopean" processes
([Julesz 1971]) may be highly independent functions.

1.3.2 - Plrimary versue *econdary cueing for .tereopaie

Suggestions 3 and 4 use what are termed primary cues for stereopsis - information that relies on
analysis from both eyes working in unison. This primary stereousis is immediate in the sense that
it provides local depth information everywhere obtainable in the visual field, information that is
unavailable from the eyes ind*vidually. It might be said that the percept occurs before cognitive
influences can play a role. Complementary to this is the use of secondary cues for visual depth
perception. Our species has learned much about the environment we have lived in over the past few
millenia that greatly facilitates the making of subjective visual judgements -- judgements that can
be made on the basis of information presented to either eye, independently. These are monocular
depth cues. Fallible as they are, such cues (see [Gibson 1950]) as:

* object overlay or partial occlusion,
* perspective deformation,
* brightness and shading,
* texture density gradient,
* motion parallax,
* hue rariation, and
* object relative size,

pr-ovide for remarkable judgements of relative depth from a single monocular view. There is no
doubt that these cues, irrespective of their classification as secondary, are principal contributors to
modern man's perception of his world.

An important point to note here is that secondary cues to stereopsis contribute an explicit globality
- they have a spatial component that relates them to parts of the visual field in their locale. A
similar provision is implicit in primary stereopsis in that local correspondences (depth judgements)
interact to produce the optimal percept for a stereo pair of views -- a more global analysis is at work

7 although issues of optic nerve bandwidth will impact upon this possibility - it seems unlikely that all photometric

information is transmitted alhng the optic nerve to the lateral geniculate body. There are roughly 10 rods, 10

cones, and, with a mere 106 optic nerve fibres, substantial coding would be necessary.

8There is no psychophysical evidence that I have seen supporting the first suggestion.
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to ensure some form of continuity or consistency in the three-dimensional interpretation. Automated
stereopsis ,mist also be globally consistent.

It is hazardous to argue about the evolutionary development of man's depth perception - as to
whether primary analysis preceded secondary analysis, or which has been the dominant factor in our
visual development. Clearly if our visual perception progressed from the lateral-looking attitudes of
our presumed genetic ancestors, then we may have had some form of strictly monocular processing
(perhaps with temporal stereo) before the occasion arose to try any fusion, so the monocular analysis
would have had a head-start on affecting our development; yet certain secondary cueo have been
determined to be consequences of experience (for example perspective deformation, as demonstrated
by the Ames room phenomenon and the experiments of [Yonas 1978], and texture variation in the
visual cliff experiments of Walk and Gibson [Walk 1961]), so are conceivably learned - it would
appear that they are mediated by higher-level functioning.

From an implementation standpoint, the choice of approach is one based on sufficiency: it seems
obvious, at least to the author, that the primary sensing mode can provide information to allow the
development of a secondary cueing mechanism, while the reverse does not seem to be true. From
this perspective, primary stereopsis is the most interesting. In truth, the two mechanisms probably
developed separately, and exist independently - although cooperatively - in constituting our Aision
system.

1.5.8 - The necessity of a primary cueing mechanism

Useful as they are, depth estimates based on secondary cues do not have the same perceptual quality
and accuracy as do those due to stereopsis. Secondary cues provide a cursory form of processing.
They may be seen as arising from abstraction over time of the information presented by the primary
stereopsis process. Our capability at attaining a perception of depth relying solely on the primary

* stereopsis process is well documented. The easily-learned fusion of Julesz' random dot stereograms -
which have neither monocular depth cues nor monocular structure - is a convincing demonstration
that stereopsis is at work in our visual system. Under circumstances of contextual deprivation,
stereopsis enables the perception of depth.

This argues. that for a machine approach to vision a dominant consideration should be in specify-
ing a stereopsis process - one which autonomously, and without the aid of domain-specific or
environment-induced knowledge, constructs a depth map of the field of view. The contribution
of this report is in a definition and demonstration of a domain-independent stereo correspondence
algorithm, one which can use certain monocular cues where available for ambiguity resolution, but
functions in the primary binocular mode in attaining the depth determinations of stereopsis. The
philosophy underlying the design to be presented here will hopefully be seen as having some relevance
to human visual processing, although the mechanisms developed for the computation will be chosen
strictly for their effectiveness and efficiency as implemented in a serial machine. (Although, as
will be seen later, the structure of the computation has been chosen so as to facilitate a parallel
implementation.)

., S f ." f ,



Chapter 2

BACKGROUND TO
MACHINTE STEREO VISION

2.1 Area-Based Versus Edge-Based Processing

Much of early machine vision work avoided the aspect of three dimensionality inherent in man's
perception of his environment, and relied upon projective monocular measures for its analysis of
visual domains. In the last eight to ten years, though, there has been a growing strong interest in
three-dimensional sensing and analysis, and this has brought with it several differing approaches to
the problem of matching the content of a stereo pair of images. The primary division among these
research eflorts is one of area-ba3ed versus feature-based analysis.

The distinction between 'feature' and 'area' correspondence here can be more a matter of degree
than type. Feature-based analysis has involved the transformation of the sensed data from a discrete
two-dimensional intensity array to a more symbolic form as significant intensity contours, or 'edges' -
features. It is the properties of these features which then provide the metric for the correspondence.
'Feature' is a fairly general term, but its use here may be equated with 'edge'. There are many
fewer 'edges' than image elements in a view of a scene, so this transformation, generally, reduces the
computational cost of determining correspondences. A corollary, and noticeable drawback of this,
is that not every point in an image is a 'feature', so the result of a solely feature-oriented correlation
will not be the dense depth map one may want.

2.1.1 - Area-based analysis

In area-based analysis two-dimensional windowing operators measure the similarity in intensity
pattern between local areas, or windows, in the two images. Cross-correlation is used to determine
matches between windows in one image wit,, windows in the other. Normalized cross-correlation
has the ability to compensate for contrast and brightness differences across images. If the lighting
and sensor/piocessing conditions are known, this flexibility in the algorithm may not be required.
In this case other correlation forms such as Normalized RMS or Absolute Difference may be used
(see [Hannah 1974] for a summary of these differing techniques).

Area cross-correlation is often not applied to every pixel in the image arrays, but selectively for
those whose local variance is high. With this approach, the variance measure is used as a filter to
limit possible correspondences; correlation is then used to select the best from among the candidates.
These variations may qualify such approacbes as 'feature-based', although they will not be considered
so here. Perhaps a better way of categorizing 'these systems is as feature-driven area-based. [Levine
1973] limits initial correlation to areas having local maximal variance, [Henderson 1979) preprocesses
the data to lind edges which are then used to bound an area-based search, [Moravec 1980) uses an
'interest operator' to select significant points in a reference image, and [Gennery 1980) uses a variance
based F test to filter out Areas of minimal information, and therefore minimal interest.

Area-based correspondence has been applied quite successfully to the stereo analysis of rolling terrain,
but it degrades when the scene is not smoothly varying and continuous. In images of such domains
many windows to be matched will have no correspondences in the other image (for example, those
windows lying on surfaces which are occluded from the other imaging position). The chief' difficulty
with thi area-based approach is in properly matching window shapes and sizes for conjugate image
areas, taking into account both variation in terrain slope and discontinuities at surface boundaries
(see [Ryan 1979] and [Ryan 1980]).
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Large correlation window sizes are required in attaining statistical significance in toe sampling, yet
the characteristics measured over the windows become less and less representative of the observed
local surface as this window size increases. Discontinuities in the surface can cause a positioned
window in one image to be sampling local intensity values from more than one intensity surfat.'
in the other image, and a correct cross-correlation would only be possible if the window could be
partitioned and matcheC with (possibly several) windows of various size and shape in the other
image. Such adaptation requires more flexibility than area-based correspondence has thus far been
shown to provide. Abrupt discontinuities in topographic structure and an abundance of occlusions
characterize urban or cultural areas. It is at precisely these points of depth discontinuity that we
want to obtain accurate surface position measurements. This would suggest that current area-based
processing is inappropriate for domains with occlusions and abrupt -depth discontinities.

Some consideration of this window shaping problem has been attempted in area-based work. [Levine
1973] and [Mori 1973] vary their correlation window sizes with the local intensity variance. They
presume that high variance implies high local texture and thus suggests the need for smaller
correlation windows, while low variance suggests surface uniformity and the need for larger sample
sizes and larger correlation windows. [Panton 1978] uses trapezoidal window shapes in the search
image, as determined by previous and predicted correspondence results, to match the rectangular
windows of the reference image. [Gennery 1980] included a partial solution to this problem for
a specific camera geometry when looking at windows presumed to lie in the ground plane. [Mori
1973] implemented an iterative technique that would compensate for terrain variations by successive
refinements to image registration estimates. Both [Levine 1973] and [Hannah 1974] included- in their
alv--ithms techniques for identifying certain scene occlusions and areas of image non-overlap, but
Ohese were entered more as cases u!t e!xception handling, and it is doubtful that they were adequate
as models of occlusion.

A related problem with area-based correspondence is that increasing window size improves statistical
significance but generally results in poorer 3-space positioning accuracy for the correspondence.
Feature-based analysis obtains more precise positioning (for its edges) in the individual images,
and it can attain correspondingly higher accuracy for its correspondences in 3-space ([Arnold 1978]
indicates that edge-based techniques offer an order of magnitude improvement in accuracy over
area-based correlation methods).

Area-based correspondence systems also tend to be prediction driven, in that they process an image
serially and at, each step use the context of previously matched neighbouring points to limit the
search for the present correspondence. None provides a backtracking facility with this technique,
and only [Gennery 1980] includes a scheme for adjusting locally determined miscorrespondences.
With little ability to either correct or detect errors, such prediction-guided approaches can lead to
rapid degeneration once errors begin to occur.

A final and important anomaly to note of area-based processing lies in the basic philosophy of its
analysis. The underlying assumption of area-based correspondence is that it is the photometric
properties of a scene that are invariant to imaging position, an(1 the correlating of these properties
will be sufficient to aIlow the proper correspondences to be determined. But it is not the reast,rable
photometric properties that are invariant to viewpoint positioning. In the degenerate, although
common enough case, a surface of a certain intensity seen unobscured from one viewpoint will not
even be visible from another slightly different viewpoint. All that can be said to be truly invariant
to viewpoint positioning is the three-dimensional structure of the scene itself. A better metric for
the correlation would be one which deals in some way with that scene three-dimensional structure.
I will return to this point in the discussion of feature-based correspondence methods.
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2.1.2 - Area-based correspondence methods

Mapping systems available commercially, and used in the photogrammetry community, are ex-
clusively area-based in their analyses. State-of-the-art photomapping devices employing automated
correlation include the Bendix AS-11B-X ([Scarano 1976]) and the Gestalt GPM-II ([Kelly 1977]).
These systems are not, in general, of much interest Plgorithmically; they have inadequate ruccess
rates for the correspondences they produce (failing to determine scene depth at between 40% and
70% of image positions, according to recent studies, see [Friedman 1980]), and require extensive
manual intervention for their operation. Moro fruitful insight to the potential of cross-correlation
techniques can be obtained by looking at systems produced in research, rather than development,
environments.

The following summaries describe the more important %%rea-based stereo correlation research systems
of the past decade. Tbe last three are the most recent and most accomplished of these systems.

Gimel'farb, Marchenku ftnd Rybak System 1972

[Gimel'farb 1972] was the first report to document the use of dynamic programming9 in a stereo
correspondence process. The algorithm described processes image pairs on a line-by-line basis,
exploiting epipolar geometry constraints and using known (a priors) disparity and surface slope limits
to constrain the correspondence search. It optimizes a cost function of normalized cross-correlation.
The convolution incorporates a lateral inhibition computation. The correspondence algorithm is
described analytically as finding the function mapping intensities from one image line to the other.
Testing was done on short wide images (i.e. 5x500). The authors suggest that one could improve the
speed of such stereo processing in two ways. First, in using the results of prior line analyses to guide
the matching and bound the search on subsequent lines, and second, in partitioning lines into smaller
stretches, reducing the combinatorics of the correspondence matching. The first is a technique that
CDC used in their stereo work (as will be discussed). The spcond can be seen as a preview of
the multiple resolution correspondence processes of Baker, when it is seen that rough alignment
of corresponding parts of the two lines must be made before breaking them into smaller stretches.
Depiction of the results obtained with the algorithm are a bit sketchy, as the plots shown are of
single line analysis only. The report comments that results from this totally automated process are
comparable to those of human operators using automated photomapping devices, although nothing
quantitative is presented.

Levine and O'Handliy System 1973

[Levine 1973] describes a system designed to provide depth information for the Mars rover vehicle's
autonomous navigation. Tests of its performance were carried out on stereo imagery collected in the
vicinity of the Jet Propulsion Laboratory. Because of the system's intended use, it was possible to
work with the basic premise that the scene viewed was approximately planar, running off to a horizon
somewhere in the distance (not necessarily in the images). It used collinear epipolar imagingl0 for
its two cameras to limit correspondence search. Matching was by intensity cross-correlation, with
an adaptive window size set by the variance at pixel (ij) in the image - a large variance sets a
small window size, and vice versa. Processing was organized to run in lines from bottom to top.
Search constraints on possible disparities were exploited throughout the analysis. First the top and
bottom lines were correlated to estimate the overall disparity ranges (notice that this presupposes
that scene depth varies regularly from top to bottom, as in a view toward the horizon). Then a

9see chapter 5 for a discussion of this

10see section 3.2.1 for a de-scription of collinear epipolar geometry
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prepass anaiysis was applied to a sampling of n lines (n - 5) to set local maximum and minimum
disparity ranges. Correlation along a line pair was over windows with locally maximal variance,
called 'tie-points'. The local maxima were used to iteratively segment the reference line. A coarse
search using statistical parameters (variance) of image windows was used to find good candidates
for the more expensive computation of the correlation coefficients. The candidate pairiprs chosen
through this process were then evaluated to select the optimal matches and to refine their positions
in three space. The coarse search was done with every other pixel along a line. Cross-correlation was
only done with windows of similar variance. The system uses the epipolar geometry constraint in a
way that prohibits positional reversals along a line. The authors indicate in the paper that they are
awvare of the difficulties introduced by occlusions, and mention an ad hoc scheme for preventing parts
of the images felt to be occluded from being matched, but the technique is not further described.
Two-dimensional proximity was also used to limit disparity possibilities; an allowable range was
set at each tie-point by examining neighbouring disparity values on the preceding line (actually the
current line minus 4 - i.e. they process every fourth row and every -econd element). Final disparity
values were smoothed, and deviants removed.

Mori, Kidode and Asada System 1973

Mori, Kidode and Asada, in a short paper [Mori 1973], describe an interesting stereo mapping
system. In it, epipolar geometry is used to constrain the search for correspondences in the area-
based correlation they use. The system is demonstrated on a model pattern and a pair of aerial
photographs, although only a single line of results is presented. A gaussian weighted correlation
function is used to diminish the effect of peripheral intensity variations. Window size is modified
by the range of disparity expected for the point, and they suggest that this should be set by first
correlating over a large window, then narrowing to a smaller window when the gross disparities are
known (the paper doesn't explain this resolution reduction process any further). An assumption
of scene continuity is also used in limiting correspondence search. The technique is iterative: the
right image is repeatedly distorted and compared with the left image until no substantial intensity
differences are found. The abstract says'that the first matching is done on highly contrasting parts
of the images ('roads, coast, forest edges'), and the context of this is used, with the smoothness
assumption, to expand the correspondences int" ".eighboring parts of the scerne; but the body of the
paper does not elaborate on this. The paper is very brief and cursory, suggesting much more than
it reveals. It would be very interesting to see whatever further documentation they have on this
system. Examples arc incomplete and inconclusive. No follow-up has occurred to this work.

Hannah System 1974
[Hannah 1974] describes a series of techniques developed for increasing the efficiency of area-

based correlators. Her thesis contains a discussion of the differences between Discrete Correlation,
Normalized Cross-Correlation, Normalized RMS Correlation, and Normalized Absolute Difference.
The work takes an experimental approach, and documents the improvements arising from:

* correlating over a sampling of the image arrays, then refining the match estimate using
the full arrays at the point having maximum correlation coefficient (this is referred to
as 'gridding'),

* correlating over reduced resolution depictions of the images, and then refining match
estimates with the higher re;solution depictions,

* abstracting area characteristics (mean/variance), and using these more symbolic
descriptions for limiting windows to be cross-correlated,

• using known camera geometry constraints to limit search.

A region growing approach *s taken in expanding correspondences outward from matched pairs (using
an assumption of surface continuity). Various heuristics are introduced for inferring the distinctions
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between occlusions, corrrespondence errors, and out-of-scene overlaps. Hannah introduced here,

through the autocorrelation function, a means of assessing the quality of area-based matc:hes.

Panton System 1978

Panton's paper [Panton 19781 describes a system for obtaining a dense digital depth map of smoothly
rolling terrain. The algorithm, using intensity cross-correlation, processes from left to right In the
images, and so, once initialized, can use local context of previous matches and estimates based on
the epipolar geometry to provide tight constraints on possible correspondences. Maximization of a
correlation coefficient in the chosen area selects the appropriate match. About 1% of the nixels in
an image are matched in this manner, although the entire image is used in determining the match
correlation coefficients. Positioning accuracy of somewhat better than one pixel is obtained. The
system is able to tailor sampling window shape in one image to follow roughly the deformation of
the rectangular window it matches in the other image. This window-shaping issue is one of the
principal difficulties of cross-correlation analysis - only in the case of flat terrain normal to the line
of sight are corresponding windows in the two images of the same shape. Panton's solution to this
is to approximate the rectangular source window by a trapezoidal window in the other image. The
technique is based on a large sampling of the surrounding neighbourhood, and uses the terrain relief
predicted by previous neighbouring correspondences to estimate the shape of the trapezoid about a
candidate surface point. Trapezoidal shaping is quite an improvement over matched windows, but is
still just an approximation to the actual projective situation. This algorithm has been implemented
in an experimental parallel processing machine which seems to achieve quite impressive performance
in processing on relatively smooth natural terrain. It is not cl.ar whether or how much operat6r
intervention is required.

MoraveE System 1980

Moravec's research (see [Moravec 1980]) was aimed at providing vehicle control information from
visual sensing. His :di was not to construct a depth map, but rather to sample interesting points
in a scene and use these to provide motion calibration information and obstacle cues. There are
three main vision contributions in his research: the interest operator, the binary correlator, and
slider stereo, the first two of which have been widely adopted by researchers in the field. The
interest operator and binary correlator date to 1974. The interest operator is a filtering technique for
selecting points at the center of locally maximal directional variance -- these are typically corners.
The binary correlator finds the best match of a feature in one image with the intensities in the
other image using a resolution varying technique. Each feature (as found by the interest operator) is
represented as a series or (5) 6 X 6 windows, in increasing resolution (i.e. 6 X 6, 12 X 12, 24 X< 24,...
in the original image). The lowest resolution description of the feature from the reference image is
moved a pixel at a time over the other reduced image, calculating correlation coefficients at each
location. The largert correlation coefficient is taken as indicating the best match. The next higher
resolution window (i.e. next smaller window) centered on this is then searched (with the next higher
resolution of the feature). This correlation process continues until a 6 X 6 patch is matched in the
unreduced image. The correlation has about a 10% error rate. In slider stereo, lateral movement
of a camera along a track provides 9 equally spaced camera stations. Correlation of the resulting
36 (9 choose 2) possible image pairings provide a series of estimates of distances to scene points.
These estimates are represented as gaussian distributions (mean equal to the distance estimate, and
the standard deviation inverzeiy proportional to the baseline) weighted by the correlation coefficient
of the feature matches (from the binary correlator). The 36 histcograms (distributions) are then
summed, and the peak taken to indicate the correct match. Stereo tracking between vehicle motions
is also performed with the interest operator/binary correlator techniques. Here, features from the
central image at the previous position are searched for in the central image of the current position,
and the results of this correlation inform the system of' the vehicle's actual movement. The positional
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and depth information obtained from these correlations provide data for the navigational control of
the vehicle. It knows roughly how far it has moved through the scene, and where its obstacles lie.
Feature sampling is chosen so as to cover most of the scene, uniformly.

Gennery System 1980

Gennery's system [Gennery 1lO8j was designed to provide depth data for vehicular autonomous
navigation. It uses cross-correlation to position points in space. The system incorporates a ground
plane finder (utilizing Moravec's interest operator and binary correlator [Moravec 1980]) that es-
timates a plane in the scene above which most points lie, and uses this to estimate the camera
relative orientations. This derived camera relative orientation information enables the mnatching of
corresponding windows to be constrained to a one-dimensional search. Having estimates of scene
noise characteristics (variance, and gain and bias between the two images), he defines a correlation
measure that provides sub-pixel positioning of corresponding windows. Accompanying these are es-
timates of the confidence and accuracy of the correspondences. Since it progresses across an image
from left to right, his algorithm can use local context of previous matches to suggest tentative match
sites. If these are inadequate for unambiguous matcaing of the particular window, search constraints
based on the epipolar geometry can be used to provide further suggestions for the correspondence.
These begin at the infinity point of the corresponding epipolar line (disparity equals zero), and come
forward (to the left, with increasing disparity) until either a suitable correspondence is found or some
already matched windows are encountered. When the correct locale has been chosen, maximization
of a correlation coefficient in a vicinity of the selected area determines the local best match. This
analysis is followed by a process of fitting ellipsoids to the determined elevation data. These, he
contends, are an appropriate shape representation for use in obstacle avoidance calculations and
scene matching.

2.1.8 - Feature-based anal yaia

Recall that area-based analysis was criticized as being based on a metric sensitive to imaging position.
Feature-based analysis avoids much of this problem, and comes closer to dealing with the true
invariant of the projection process: scene structure. It works generally with the premise that a local
measure on the intensity function is representative of physical change in the underlying scene. The
local measure on the intensity function could be, for example, a maximum in intensity gradient -

peak in the first difference of intensity, zero-crossing in the second difference. Physical change in
the scene could be a break in depth continuity and accompanying projected surface reflectance or
luminance change, or a change in surface intensity from a surface detail without topographic break.
The point to notice is that feature-based analysis uses the semantics of intensity variation in its
attempt to extract measures of the physical change in the underlying structure of the projected
views, and uses these two-dimensional observations to infer the three-dimensionality of the scene.
The validity of this intensity edge tracking in a stereopsis system is apparent:

a discontinuity in surface orientation will, in general, give rise to a variation in incident
reflection which will appear to an imaging source as a change in brightness - tracking
the intensity edge across the two views will track the surface discontinuity;

a discontinuity in surface reflectance (a surface marking or pigment change) can be
tracked to reveal the three-dimensional position of the variation on the bearing surface;

* an illumination discontinuity (shadow edge), although not likely corresponding to a

surface discontinuity (the shadow will lie on the surface), will be visible as a brightness
discontinuity - tracking the shadow edge across the two views v.,ill provide depth
information about the shadow-bearing surface;

4I

.a --- - - - - - - - - - - - - -.
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2.1.4 - Feature-based correspondence methods

Probably the most widely known edge-based stereo scheme to date is thai of Marr and Pogglo ([Marr

1977]), as implemented in a computer program by Grimson (see the following summary [Grimson

1980]). The algorithm has been fairly well tested on a reasonably wide variety of images (random
dot stereograms, natural terrain, urban scenes), and is at present being implemented in hardware

[Nishihara 1981]. [Arnold 1978] developed an edge-based stereo correspondence system that used
local edge properties to select edge match possibilities, and a weighted iteration process to resolve
match conflicts. The stereo processing system of Henderson, Miller and Grosch of the Control
Data Corporation research group (as summarized in [Henderson 1979]), called the Automatic Planar
Surface System, uses edges to guide it's area-bascd matching. They address their work specifically
towaid the problem of constructing planar models of rectilinear cultural structures from stereo pairs
of aerial imagery. An extension of this CDC work ([Degryse 1980, Panton 1981]) has lead to a stereo
matching system that uses both local edge information and extended edge information in its stereo
matching. Some earlier systems whose simpler stereo processing was coupled with object modelling
and recognition work will not be discussed here (for example, [Baumgart 1974], [Baker 1976], and
[Burr 1977]).

Arnold System 1978

[Arnold 19781 describes an edge-based stereo correspondence system which uses edge orientation
and side intensity, and edge adjacencies in determining the set of globally optimal edge matches.
Examples are shown of the processing of aerial views of ani aircraft, cars in a parking lot and an
apartment complex. The Moravec interest operator and binary correlator [Moravec 1980] and a
high resolution correlator and camera solver [Gennery 1980] are used in determining the relative
orientations of the two imaging stations. The Hueckel operator [hlueckel 1971] is applied to the
images, producing a set of edge elements for the correspondence. The derived camera attitude
information is then used to reorient the edges to a canonic frame - one where the stereo baseline is
along the x-axis and disparity shifts due to the tilt of the ground plane are cancelled. Disparities are
restricted to those lying between zero (the ground) and some a priori limit in the x direction. A list
of possible matches in the right image is obtained for each edge in the left image. Loose thresholds
are used to specify the adjacency structure of the edges. A reinforcement/inhibition voting scheme
is applied to the adjacency structure and match list, and the resulting maxima are chosen as the
correct matches. The technique uses many heuristics and thresholds, and is said to be quite sensitive
to the output of the Ilueckel operator.

Control Data Corporation's Automatic Planar Surface System 1979

The aim of this CDC work [Henderson 1979] was to provide automatic reference preparation
capabilities; the references being structural models of buildings which may then, at a later point, be
used in scene recognition for autonomous guidance. Because of this aim, they addressed their work
specifically toward the problem of' constructing planar models of rectilinear cultural scenes from
aerial imagery. They to(.k an interesting edge and area-based approach to their solution, using edge
inlormnation to guide the application of a (lynamic programming intensity correlation for line-by-line
pixel matching. The principal contribution of their research is in this 'Broken Segment Matcher'.
Roughly, their algorithm functions as follows:

* Geometrically transform a pair of images, bringing them into a collinear epipolar

frame.

* Locate (via a Sobel operator) and 'thin' edges in the two images.

* Establish edgc correspondences in the first pair of epipolar lines by hand.
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* Maintain two cooperating correspondence processes to minimize the effects of image
noise and extraneous detail. The first process matches intensities using only edges
deemed to be 'reliable', such as those seeded to the system through the manual startup.
The second process considers all edges, and, using the correspondences found by the
first process for the particular line correlation it is presently performing, suggests a
larger set of correspondences. Those correspondences which are seen to 'persist' over
several preceding second process line analyses (implying that they arise from true scene
geometric discontinuitics) are given for consideration to the first process for its next
line analysis.

The correlation's metric is pixel intensity difference. The two processes both use a least squares
minimization on these intensity differences to choose the optimal edgn correspondences. Edges are
used to bound the linear regions, or intervals, being correlated, and edge correspondence is a side
effect of the intensity correlation - edges themselves are not compared.

The algorithm progresses from one image epipolar line to another, prbpagating results (to limit
subsequent search) as it goes. The algorithm, as noted in the summary, requires manual starting.
It propagates determined correspondences along paths of proximal edges as it progresses from line
to line. Constraints have been built into the system to make it only applicable to planar surfaced
structures, and the correlation only accepts transitions indicative of nearly horizontal or vertical
walls ... in fact, they go to substantial effort to ignore surface detail (such as roads, sidewalks,
windows). The algorithm preprocesses the imagery data in a way that precludes it from working
with anything other than straight lines (as derived from sequences of edges) in the images. They
have processed and documented the analysis of a single scene with their algorithm.

Their aim was to produce a three-dimensional planar rectilinear description of cultural scenes. The
results shown do not indicate that they have succeeded. One point to note is that their use of two
correspondence processes, with the second introducing 'new' and removing 'old' scene structures
from the analysis, introduces a hysteresis into the processing - new structures (in the direction

of processing) take a while to be believed ('persist'), while old structures take a while to disappear
once passed. Precision would seem not to have been one of the desired properties of their system.
Further, a recent paper from the group comments on the instability and 'noisy' nature of the two-
process structure ([Degryse 1980]), and explains several constraints they propose introducing to
reduce the effects of these problems (see also [Panton 1981]). The constraints -- the scene is imaged
orthographically, the structures are strictly rectilinear, all vertical surfaces are either parallel or
orthogonal, and all horizontal surfaces are parallel -- are severely restrictive, and have no provision
for the generality and flexibility a reasonable stereo system must have. Once introduced into the
analysis, it is difficult to conceive of' how these restrictions could be removed for the processing of

more general domains. The constraints they have used serve to bound the applicability of their
process, rather than bounding its cost.
These criticisms aside, however, there is a lot of merit to their work: the overall approach they

took was fairly comprehensive, and they addressed ninny important imaging and correspondence
questions as side issues of their study. In the context of their goals, the constraints they introduced
were reasonably valid; although one should note that the crucial question of identifying a scene
as cultural in order to allow this constrained interpretation was not addressed. A benefit of
having read the reports of this work was in noticing their use of dynamic programming for the
optimization; a variation of this technique has made a considerable contribution to the efficiency
of the correspondence process used in Gie research I will be discussing here (see [Forney 1973]).

4 •Dynamic programming for stereo correspondence was first documented in [Cimel'farb 1972].

K.
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Marr-Poggio System 1980

The approach of the MIT group is in melding psychological theory and observations into a com-
putational algorithm foe stereo vision. They consider neurophysiological relevance and biological
feasibility crucial aspects of their algorithm, and support the details of their approach with exten-
sive references to the perceptual psychology literature. The algorithm, developed basically by David
Marr and Tomaso Poggio [Marr 1977], is an edge-based line-oriented filtering and matching process.
Crimson's implementation of the stereopsis algorithm [Crimson 1980] processes as follows:

Fill 4 pairs of working arrays with zero-crossing values and orientations. The tero-
crossings are found by convolving the images with 4 spatial frequency tuned band-pass
filters, varying in size from 7 to 63 pixels in width.

q Set initial vergence values for the eyes in the two images (manually).

* Match zero-crossings in the paired arrays with these relative eye positions. Within
paired arrays, the process decides upon acceptable matches on the basis of zero-crossing
contrast (positive or negative) and very rough edge orientation estimates (quantized to
30 degrees, so slopes must be within approximately 60 degrees of eachother). Matches
are of positive, negative, and zero disparity, relative to the vergence.

. Mark ambiguous or 'no-match' edges as such.

* Check unmatched points in regions, and for those where this number is greater than
30%, delete all matches. Regions are defined with regard to some statistical measure
to ensure that the size represents a reasonable local sample.

* On the basis of low frequency filter matchings, make various positive and negative
vergence movements to bring unmatched high frequency edges into correspondence
(high frequency edges come from the smallest filters), and iterate on the matching
process.

A subsequent process interpolates a smooth surface to this derived edge-based disparity data, result-
ing in a full depth map. The assumption that allows interpolation to take place is that 'no infor-
rmation is information,' i.e. that the lack of edge signal in a part of the scene indicates that there
are no intensity discontinuities there, and thus likely no depth discontinuities. If the scene contains
no occlusions then this assumption is valid; although, even allowing this, it is rather dismissive of
useful intensity data which could provide information on subtle surface shape variations. What the
assumption principally neglects is the difficulty presented by unseen intensity discontinuities ...
those hidden by occluding contours. In his work, Crimson presumes that an intensity discontinuity
separates image locales of equivalent disparity. Counter examples abound. Having this 'no infor-
mation is information' assumption, the interpolaton scheme makes no distinction between surface
boundary points (where there is depth discontinuity) and surface detail (where there is none) ... the
former should be breakpoints for the interpolation, the latter knots. The resulting surface fitting
smooths an 'elastic plate' over the entire scene. Elegant as the interpolatory analysis may be, the
only interesting solution to the prc:blem of defining inter-edge surface shape would be one which
considers the global context at each edge ('Is there any indication that this is an occluding edge?')
and, where possible, domain knowledge ('Are their buildings in the scene? Does this seem to be the
top of one?'). That is, an interpolatory technique must be coupled with a scheme V'o distinguish
knots from breakpoints.

The results published include the analysis of several random (dot stereograms, each composed of 4x4
randomly positioned Lack and white squares, with the maximum vergence variation running from
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2 to 6 dot widths. Other examples include a ground level building scene, a view from a Mars Viking
vehicle, and a random dotted coffee jar.

Assessment of the algorithm is a bit difficult: it uses a fairly simple control structure with unsophis-
ticated matching criteria, and its success from these mechanisms is quite remarkable. But questions
arise. The approach lacks a mechanism for assessing global consistency in its correspondence
results. It would seem from the discussion of the algorithm that the initial eye vergence plays an im-
portant role in determining the final set of correspondences. By accepting high frequency channel cor-
respondences on a local basis the implementation precludes other vergence matchings which could be
globally more satisfactory (it should be noted that, lower spatial frequency is not s-ynonymous with

globality - see [.Julesz 1976]). Notice also that the low-frequency to high-frequency control struc-

ture that is said to be as used here is shown in [Frisby 1977] to be inadequate as a model for human
sterecpsis. Using a maximum filter size that corresponds to the largest observed in roveal vision only
(the implementation doesn't vary filter size with eccentricity, as the theory suggests), Grimson has
excluded from his processing the poss;ibility of the more globally-driven radical vergence movements
that seem necessary for scenes having large disparity variations. Perhaps this would be recoverable
through the correct implementation, with filter size varying with eccentricity ... he has only imple-
mented the theory for foveal vision. Monocular cues, which their theory doesn't address, are
known to provide information for such radical vergence rmovements ([Saye 1975]). Initial vergence
is set manually; it is not clear how subsequent major vergence adjustments are controlled. In fact,
several control strategies are experimented with in the text, cacti to give the optimal results for the
chanpel noise settings being tested. No clear definition of vergence control is given. In the light of
the chronic failure in past vision research to document limitations and test to the breaking point, it
may seem rather unfair to bring criticism to an apparently successful algorithm such as this, but its
completeness has yet to be demonstrated (an interesting recent extension of the Marr-Poggio theory
of stereopsis that addresses sonic of these issues is described in [Mayhew 1981]).

Dissatisfaction with the Marr-Poggio theory, and its implementation by Grimson, centre around:

a) their failure to define precisely its vergence mabchanism,

b) the lack of a global control structure, one which would guarantee some optimal
correspondence between the two images ([Frisby 1977]),

c) its failure to adequately consider other both local and global constraints in its
matching criteria (such as statistical characteristics of surface slo: e, edge orienta-
tion, and intensity variation), and

d) the theory's neglect of established monocular cues to stereopsis ([Saye 1975]) - it
would appear to be owing in large part to chance alone that images with large
disparities could be fused correctly.

Although the approach to be discussed here isn't based on adherence to a theory of human stereopsis
- rather, it centres on ai. analysis and exploitation of various geometric and photometric constraints
on an imaged scene --- parallels do exist, between it and the Marr -loggio algorithm. Both process
edge descriptions of the image pair, (tetormining correspondences on the basis of local edge properties,
both work at several levels of' image resolution (although with differing techniques), and both aim
for a depth map description of the imaged scene.

Control Data Corporation Struttural Syntax Approach 1981

Two documents, [l)egryse 1980] and [i'anton 1981], describe more recent work frori the CDC group

that was designed to supplement their previous epipolar matching process [Henderson 1979], which
they classified as 'noisy', 'fragmented', and 'unstable'. They hoped to introduce information of a
more geometric nature to constrain the possible interpretations and "remove some of the unreliability

S. .. :- . . . .: .. . . . . . . . .. . .. .. .- . ...___ __ _ _ . . .. z... . ... . -: . . . . ... .. - .... .. . .. .. . . . .¶ -...-.. . . . .. . - 1.]
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and ambiguit4" of the matching process. At the same time they redefined their goals so as to
remove the urgency of the 'autonomnous' in their processing. Again, they are concerned in this work
with the analysis of images of urban structures, stereoscopicall projected either orthographically
or centrally to planar imaging surfaces. The [Degryse 1980] paper describes modifications to their
Broken Segment Matching scheme, while the [Panton 1981] report describes subsequent work.

Noting the inadequacies of their first stereo system for processing in the same domain [Henderson
1079], calling it 'blind' to the surrounding context of the cultural scene, they argued that they
needed to incorporate a priori knowledge of cultural scenes into their analysis. They designed a
'structural syntax' to provide this geometric information. The structural syntax is introduced as a
set ofrgeometric principles specific to the sort of 3-1) cultural scene their research addressed. Intended
application was restricted to structures in the form of right parallelepipeds; the structural syntax
defined a meclanism for the restrictive interpretation of scenes as these objects.

There are three principal elements of their structural syntax, and these are shared by both recent
approaches:

1) The edge orientation principle uses the convergence of 3-space parallel lines to vanishing points for
clustering parallel edges. The authors presume that building orientations are known and are all
identical, so that a single pair of vanishing points suffices for all scene horizontal edges, and there
is a single vertical edge vanishing point. In the [I)egryse 1980] work, this labels edges, so limits
the set of possible Cdg( i matches. Note that the syntax is being used here to restrict the projective
orientation and shape of all srene surfaces. Vanishing points are currently determined manually
(utilization of vanishing points for polyhedral scene interpretation has also been suggested in
Uliebes 1981]).

2) The pruciple of known or fixed transform slope governs the allowable 3-space orientations of
building faces, constraiaing surfaces to be either vertical or horizontal. This constrains the
solution paths in their Broken Segment Matching process in [Degryse 1980].

3) The ruin-max transform principle limits the range of acceptable heights for structures to some

interval known a priori, and is used in both the Broken Segment Matching process.

[I)egrysc 1980] showed no computed results. Testing of the algorithm specified in [Panton 1981] was
done oni a small portion of a single pair of images of one medium sized building.

The authors acknowledge that their systems still require extensive testing and development. The
present systems appear to demand a substantial amount of skilled operator intervention, requiring
iterative tuning of parameters and repeated passes through the low-level processes. As an aid to
manual reference preparation either of these systems may be adequate. But neither will suffice where
automatic and flexible processing is needed. As an example, note that the restrictions imposed by the
'syntactic rules', the need for manual intcrvention at almost all stages of the processing, and the lack
of success at even this simply structured problem make these systems completely inappropriate for
the real-time processing needed of' the system that is to use the models created by such a 'reference
preparation' system.

'4
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2.2 Critique of Exiating Systems

2.2.1 - Autonormous processing

A stereo system to operate for .utonomous mapping, reconnaissance, or inspection in some domain
must be able to initialize itself and run without the need of operator intervention.

Of the systems described above, only Gennery's runs entirely autonomously. The system of [Panton
1978] appears to require manual initialization, as does certainly the Control Data Corporation
systems [Henderson 1979, Degryse 1980, Parton 1981] and, to a lesser extent, the.[Grimson 1980]

V." system. These may also require manual intervention during the processing - the [Henderson 1979]
and [Degryse 1980] when there are vertical breaks in scene continuity, the [Grimson 1980] when
the disparity differences exceed the size of the largest convolution operator, and the [Pan;on 1978]
system when the terrain approaches discontinuity and the correlator begins to diverge locally from
the correct matchings.

If'- 2.2.2 - Dorr ain• restrictions
An understanding of its domain of intended use and an analysis of its performance capabilities will

give us insight into a stereo system's overall range of application, and thus its utility.

In general, the performance of the area-based correspondence schemes will degrade rapidly when
confronted with scenes of discontinuous structure, and this makes them inappropriate for the analysis
"of cultural sites. The CDC techniques of [Henderson 1979], [Degryse 1980], and [Panton 1981] exclude
the processing of rolling, curved, or even non-rectilinear structures - predisposed to the analysis
of building tops, they are inappropriate for most everything else. None of the systems described
can work well where details in the background have reversed positioning with respect to occluding
surfaces lying before them (consider a finger at arms' length and the background beyond) - this is
referred to as the edge reversal problem. The Grimson work is the only one which does not make
explicit mention of excluding such positional reversals between the two imaging planes, although it
probably does so in the working of its region disparity consensus and its use of disparity pooling in
the matching process. Excluding edge reversals is such a convenient expedient when working with
ep-'olar geometries that it has been widely accepted for the correspondence processings. That it is
a restriction becomes obvious when it is noticed that it prohibits the simultaineous fusion of a thin
object (like a pole) and its background - relative to the pole, what is left-right in one image will
be right-left in the other. This artefact of the processing may be excused to some extent in that it
is also observed in human stereopsis, but there is no obvious necessity of building limitations of the
human system into a machine system (in their study of the limitations of binocular fusion, Burt and
Julesz ([Burt 1980]) comment on inability to attain fusion with positionally reversed points).

Looking at the range of examples presented in the published results from these stereo systems also
provides insight to their applicability. [Panton 1978] has demonstrated a single rolling terrain stereo
pair analysi3, as nas [Gennery 1980], although Gennery's scene contains some rather large rocks and
the scene slopes off to a (pot seen) horizon. [Levine 1973] shows the processing of two rock-strewn
scenes, similar to that of Gennery. The views in these area-based systems are, as expected, of
terrain, and depth disconitinuities are either not severe or ignored. [Grimson 1980] has applied his

V algorithm to consid( \bly more scenes ... many random dot stereograms, and several real image
K pairs.
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2.2.3 - Global consistency and monocular cues

The human perceptual system has the advantage that it can call upon higher processes to comment on
the consistency of its visual observations. Only rarely is our binocular sight confused by ambiguities,
and then this can usually be removed with a tilt of the head or slight motion to the side for a different
perspective and more information (an observation which lead Moravec to his development of slider
stereo [Moravec 1980]). An interpretation mechanism is at work with which our stereo systems at
present have little to compare. Important considerations for a stereo system are how successful it is
at resolving ambiguities, and how consistent is its interpretation over the entire scene.

Some researchers have decided that a smooth result is a good approximation to a consistent result,
and perform local averaging of depth measurements, hoping to diminish the impact of gross errors
through the abundance of good correspondences (for example [Levine 1973], and [Grimson 1980]
with his disparity consensus requirement). A superior approach is to work within a set of valid
assumptions or observations on the nature of the viewed world, and use the implications of these
to choose among ambiguous or inconsistent interpretations. [Gennery 1980] uses an analysis of his
correspondence error distributions to enable the automatic editing out of 'wild points'. One common
assumption is that the scene is smooth and continuous most everywhere, and can be expected to
be discontinuous at only a small number of locations (for example at those places where the viewed

luminance is undergoing abrupt change).

The way such knowledge enters the analysis varies. In some work, the continuity assumption is used
in prediction. [Levine 1973], [Panton 1978], and [Gennery 1980], in their area-based systems, use the
context of neighboring points to limit the search for point correspondents, presuming that points
neighboring in two dimensions should be neighboring in three dimensions. But this has determinacy
problems - the results would change were the analysis to be done in a different order, for example
with right to left scanning rather than left to right - and decisions are made locally, in a set
direction, usually never to be revised. Further, these systems do not have mechanisms for locating
actual scene depth discontinuities (see below). The MIT Grimson work makes good use of inference
on tne continuity of surfaces and the lack of edge signal in its interpolated surface fitting (see the
summary), but again fails to deal adequately with actual scene depth discontinuities. Also, the
system's use of context in its local edge matching is marginal, in that matching at a lower resolution
(lower spatial frequency) appears to be a prereqt'isite"for matching at a level of finer detail (higher
spatial frequency). A global metric is used in consistency checking of disparities over regions -
requiring 70% of the disparities to be in agreement (one standard deviation, presumably), but this
has been implemented without adequate analysis (see [Grimson 1980] page 75, where it appears to
produce a highly quantized, planar effect). [Schumer 1979] discusses a possible mechanism in the
human system for this spatial averaging of disparities.

2.2.-4 - IdentifyVing depth discontinuities

As suggested above, an issue related to the achievement or global consistency is the identification
of depth discontinuities in the scene - those places where the viewed surface is not smooth andcontinuous. This capacity has not been reliably incorporated into area-based analyses, where poor

matches arising from occlusions ot extreme perspective effects merely return a low correlation value,
indistinguishable from other causes of poor matches. In cases of occlusions, the intensity values in a
window about the depth discontinuity in the two views would have little likelihood of corresponding,
and here, the correlation coefficient as a measure of similarity is inappropriate. Edge-based analyses
operate with the artefacts of (among other things) depth discontinuities, and the inference capability

this may not be always the case; the system description does not make a precise definition of the control structure

. . . . . •. . , .j•
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is available here for distinguishing occlusions and abrupt changes in depth (although none of the
cited systems use it). [Binford 1981] discusses the inference of spatial events from monocular cues.

2.2.5 - Parallelism possible

A stereo system to be used for tasks of navigation or process control must be judged on its ability to
provide depth measurements at rates approaching real-time. The enormous amount of computation
inherent in the analyses makes it unlikely that a scheme with intrinsic ordered dependence in its
processing will be able to provide adequate speed, The potential for parallelism in the algorithm is
an important consideration.

Neither the [Panton 1978] nor the [Gennery 1980] approaches could take full advantage of the high
parallelism possible in the computation since they process from left to right in columns across the
match image, relying upon previous correspondences to constrain the search for matches. The
[Levine 1973] and [Ilenderson 1979] approaches are similarly limited, in that they process by lines
from image bottom to top, with each line progression passing up the results of the preceding line
analyses to constrain the search. The Grimson algorithm is amenable to parallel implementation,
and is in the process of being put into hardware ([Nishihara 1981]).

2.2.6 - Four criteria

We would like a stereo mapping system to have:
* no necessity for manuai intervention, either initially or during the processing,
* no domain bias - certainly no predilection to horizontal or vertical surfaces, and no

limitation to strictly rectilinear structures,
. both local and global metrics, to enable optimization and confidence measures at both

levels,
• a capability of being implemented in parallel hardware, with, for example, a simple

partitioning of n processors for n lines of analysis, or a distributed array of m X n
processors for a pair of m X n image arrays.

2.3 Goals of this Research

As may be inferred from the critiques above, my intention when beginning this research was to
design and implement an autonomous robust, domain independent stereo vision algorithm - one
with a structure that would lend itself to a parallel realization. These various aims were meant to
be achieved in the following ways:

[Robustness] The information in a two-dimensional grey scale image is spatially highly redundant.
Exploiting this, line-by-line processing would be used to obtain locally good correspondence
estimates, and global consensus would be reached through a cooperative process that enforces
three-dimensional continuity.

A two-dimensional grey scale image can be expected to have a broad spatial frequency
spectrum. Filtering this spectrum and processing from the bands of lower frequency to higher
frequency (in the direction of lower to higher noise sensitivity), provides the benefits of a
coarse-to-fine control strategy ([Kelley 1970]). This suggests an analysis at several ievels of
resolution, guiding the higher resolution matching from the lower resolution analysis. The
hierarchic principle in this is intrinsic to the system's processing in several ways. Resolution
variation is one of them. The general theme is to process first the most reliable signal and
use this to guide the successively more noise-sensitive analyses.

A
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[Domain Independence] The choice of general constraints (on general observations) as opposed to

specifics of certain configurations, is the principal determinant of domain flexibility.

There are no assumptions on the nature of the viewed scene, other than that its structure
doesn't vary between left and right imagings.

Testing of the algorithm on images of both cultural scenes and natural terrain would
demonstrate this flexibility.

[Parallel Implementable] The algorithm should be designed so thai its computational structure Is
partitionable into parallel streams. Local interactions only (in both the line-by-line matching
and any subsequent global consistency process) would provide for the separation of computa-
tion along line-pairs. With such a structure, a machine with n processors could be made to
do n lines of image analysis in time dependent only on line width.

The results of the processing should be a digital depth map of the viewed scene. This would produce
three-dimensional data in a form appropriate for input to a three-dimensional terrain arid/or object

modelling system (such as ACRONYM [Brooks 1981aJ).

These aims were all part of the initial design of the system, and have all been addressed in the
research to be described here.

2-.4 Summary of the Processing

"The input to this system is two images forming a collinearized stereo pair. The collinearization is
essential at present in that it guarantees that image lines correspond to epipolar lines (see [Hallert
1960]) - a constraint that greatly facilitates the matching process. The processing is begun by
samplin3 the images in both horizontal and vertical directions, measuring the distributions of
intensity values and first difference in intensity values. Intensity distributions are used to adjust
image gain and bias, and the distribution of first difference in intensity is used to determine the
intensity variance ad, a measure of image noise which has an important role in the correspondence
process. Figure 2-1 shows a stereo pair of synthetic urban imagery provided by the Control Data
Corporation. This stereo pair, as all pairs in this report, is positioned for cross-eyed stereo viewing.

In the first phase of its processing the analysis here is edge-based. Edges are powerful abstractions
of image content, and their use greatly reduces the combinatorics of the correspondence process.
They provide higher precision disparity measures than intensity matching techniques, and, through
their mutual connectivity, enable explicit use of global information for reducing the ambiguity at
the matching level.

To obtain these edges the images are convolved with several operators to produce descriptions of

the image intensity boundaries (edges) at several levels of resolution. The convolution operators
work on a line of the image at a time, and consist of up to four zero-crossing filters and a low-
pass smoother. The smoother is used to reduce the resolution of the lines of the images, halving
resolution at each application. Such an approach has had previous successful application in visual
processing (e.g. [Kelley 1970], [Marr 1977], [Moravec 1980], [Crimson 1980]), and has relevant ties to
the neurophysiology of vision, where some researchers feel a multiple spatial frequency analysis is

part of the human system's processing ([Wilson 1978a]) (although the filtering used here is low pass,
and not bandpass). Reductions in image resolution are made until the image noise (as measured by

the pixel intensity variance statistic) is less than one intensity unit. This rcsolution diminishing can
proceed to a maximum of 3 reductions, at which point it has been found that, for the image sizes
used, there is too little image content left to allow for reasonable matching. The filters detect zero-
crossings in the second differences measured at each image pixel. Certain properties are associated
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with the edges found by these zero-crossing filters, and links are kept cnnecting the edges. with
those near them in the two-dimensional image. Figure 2-2 shows the full resolution edges found in
the images of Figure 2-1.

Image lines are paired, corresponding ones from the left and right, and the edges contained in these
are matched via a dynamic programming technique The correspondence process starts with the
lowest resolution edges, and uses the disparities determined there to select which subsets of th" full
resolution edges will be brought together for possible matching. This mapping of low resolution
correspondences to full resolution edges passes through the intermediate resolution depictions,
although there are no explicit intermediate resolution matchings. Each pair of corresponding lines
is processed independently. Figure 2-3 shows a typical pair of corresponding image lines, taken from
the images of Figure 2-1.

Once all lines have been processed and the various edge correspondences have been deter.Ined,
measures of interline disparity variance are computed. Statistics of this are used to 'question'
certain correspondences, and a cooperative proces.- ensures that those inconsistent correspondences
are removed.

This is the first half of the analysis, a low-to-high resolution matching of image edges with subsequent
global consistency enforcement. It produces a reasonably dense edge-based disparity map of the

viewed scene which forms a template of constraints for a subsequent correspondence analysis. Figure
2-4 shows (in stereo) the connected edge correspondenc,'s resulting from the processing of the images
of Figure 2-1 to this point.

The second half of the analysis is a further edge, and then an intensity-based matching, and,
as mentioned, these rely upon the first correspondence process's results to constrain the match
possibilities. Selecting corresponding lines from the two images, the edge-based matcher attempts
to pair edges which were either rejected by the earlier optimization process or were removed
as 'questionable' during the cooperative consistency enforcement in the process of removing bad
correspondences. Only those edges that are in corresponding intervals are considered for matching
here. This edge matching completes the edge analysis.

"The intensity-based matcher pairs not edges but image pixels themselves. It uses a metric which
minimizes intensity variance and maximizes interpolated surface linearity. As in the edge-based
correspondence process, the context of the matching is tightly constrained - corresponding pixels
must come from corresponding intervals, as delimited by edge pairings. Intensity-based matching
in general (for example [hlannah 1974], [lPanton 1978]) is limited to analysis of rolling, smoothly
varying terrain - it fails at surface discontinuities. Edge-based matching functions expressly at
image locations experiencing high intensity variance, notably at surface discontinuities. So with edge-
based matching providing precision disparity positioning and a highly constraining local context, the
conditions are right for an intensity-based matching in the intervening intervals. Figure 2-5 shows
the final elevation results of this processing for the images of Figure 2-1.

The matching algorithm in these last two cases is again a dynamic programming technique. The
result of the full processing is a complete image array perspective (disparity map of the viewed scene.
Figure 2-6 highlights the structure and processing flow of this total scheme. A bric' summary of the
system can be found in [Baker 1981a].

K
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A stereo pair of images (from Control Data Corporation) [256 X 256 X 6] (enhanced)
Figure 2-1
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posikion--+ Corresponding line edges, with intensities marked
Figure 2-3

Perspective view of connected edge elements
Figure 2-4

Image array Orthogonal depth map
V Figure 2-5
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Chapter 3

EDGES AND CONSTRAINTS

8.1 Th Use of Edge.

The "edge-based" in the title of this report refers to the distinction between th. use of operators to
reduce an image to a depiction of its intensity boundaries, which are then put into correspondence,
and the use of area windowing mechanisms to measure local statistical properties of the intensities,
which can then be correlated. The system described here deals with the former because of its:

a) reduced combinatorics - there are fewer edges than pixels,

b) greater accuracy - edges can be positioned to sub-pixel precision, while area
positioning precision is inversely proportional to window size, and considerably
poorer, and

c) more realistic invariance assumptions - area-based analysis presupposes that the
photometric properties of a scene are invariant to viewing position, while edge-based
analysis works with the assumption that it is the geometric properties that are
invariant to viewing position). Fdges are an abstraction of the image, are less
sensitive to absolute irmage brightness levels, and highlight the structural aspects of
the scene.

Edges are found by a convolution operator. They are located at positions in the image where a
"change in sign of second difference in intensity occurs. A particuJar operator, the one employed here
for the full resolution analysis being 1 by 7 pixels in size 12(see Figure 3-1), measures the directional
first difference in intensity at each pixel. Second differences are computed from these, and changes
in sign of these second differences are used to interpolate zero-crossings (i.e. peaks in first difference).
Certain local properties other than position are measurzd and associated with each edge - contrast,
crientatiun, and intensity to either side - and links are kept to nearest neighbours above, below,
and to the sides. It is these properties that define an edge and provide the basis for the matching.
Correspondence techniques using similar such edge properties are described in [Marr 1976], [Arnold
1978], [Baker 1980], and [Mayhew 1981).

The operator processes left to right (horizontally) and top to bottom (vertically) in two separate
passes over the image arrays, looking in each pass for oriented zero-crossings above a (noise-based)
threshold (see Chapter 4, discussing statistical measures uzed in the analysis). Edge orientation is
determined for each supra-threshold zero-crossing by the ratio of orthogonal components of the. first
difference operator, as shown in Figure 3-1. The left to right scan uses the horizontal component of
this operator (7 X 1) and the top to bottom scan uses the vertical component (1 X 7).

3.2 Tht Use of Geometric Constraints

The stereo matching is a search for edge correspondence between images. Figure 3-3 shows the
edges found in the two images of Figure 3-2 with the second difference operator. The operator works
in both horizontal and vertical directions, but it only allows matching on edges whose horizontal
gradient lies above the noise - one standard deviation of the first difference in intensity. With
no prior knowledge of the viewing situation, one could have any edge in one image matching any

12
1 The edge operator is simple, basically one dimensional, and is noteworthy only in that it is fast and fairly effective.
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edge in the other. The combinatoricsof this can, understandably, get very high. One would like to
introduce general constraints to limit the cost of this search.

8.2.1 - Search constraints

Knowing the geometric relationships between the cameras used in the imaging can greatly reduce
the search needed in finding edge correspondences. Projective lines, termed epipolar rays, can
be determined in the two images along which corresponding edges must lie. Figure 3-4 shows
the geometry of this situation. With image planes 7ri and 7r7 having principal points P1 and P,,
imaging centres C1 and C, , line CIC, is the epipolar axis through which pass all epipolar planes.
The intersection of each epipolar plane with the two image planes 7ri and ir, defines corresponding
epipolar lines. A specialization of this general camera geometry is used, wherein the image principal
horizon lines are collinear and the image principal vertical lines are parallel. In this configuration
the epipolar axis does not intersect the image planes, and corresponding image horizontal lines are
in fact epipolar lines. Although excessively restrictive for a general system, this was felt to be a
justifiable simplication for our research work.

Consider Figure 3-5, in which two cameras are arranged in this configuration. Any point in the
scene will project to two points on their image planes -- one through each of the two lens centers
(notice that the image planes are coplanar). The connection of these two points will produce a
line parallel to the baseline between the cameras, and in this cas; parallel to the image horizontal
lines. Corresponding edges in the two images, then, must lie along the same line in the two image
planes. This camera geometry gives rise to images with a collinear epipolar geometry. The algorithm
described assumes the stereo pair to be in a collinear epipolar geometry, and if this is not the case
then the appropriate transformation of one image relative to the other must be made before further

* processing is done. Note that a less restrictive solution would be to have the correspondence process
informed of the camera geometries, and have it solve for the more general epipolar geometry of

KK -"..
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epipolar lines. This means that there cannot be reversals of edge order from one image to the other.
Consider Figure 3-6. Left image edge L, which lies to the left of edge L5 cannot match right image
edge R. if R,, lies to the right of edge R, which matches edge L6 . This constraint lies at the heart
of the Viterbi method, although it is not without its drawbacks. Notice that if the image planes
Tg and 7r, face eachother, then objects in one image will be sequenced from the left while those in
the other will be sequenced from the right. If the ldges of these objects were allowed to match, It
would violate our monotonicity constraint. This is a degenerate example of a general problem. The
ordering of objects in the two projected images depends upon their distance from the imaging points
- foreground/background appear as right-leat or left-right depending on the camera site, and It
should be clear that the problem of edge reversals is unavoidable. The use of this constraint will
exclude from analysis, for the time being, such features as wires or overhanging surfaces, features
which lead to these positional reversals in the image (see Figure 3-7). Psychophysical evidencc.
suggests that this reversal also causes the human vision system trouble - we can fuse one or the
other, the nearer or the farther, but not both at the same time ([Burt 1980]). Fusion of the itenis
causing the reversal can be achieved only by vergence movements executed explicitly to bring them
one at a time into fixation. (A similar method would provide a means of dealing with reversals here

reprocess the edges left unpaired by the matching process, treating them as satellites possibly
left unmatched because of such local rivalries.)

I P
/ \
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- Edge reversals along an epipolar line-pair
Figure 3-6
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Examples of surfaces violating the Viterbi monotonicity constraint

Figure 3-7

9.2.2 - Interpretation constraints

When the edge-based correspondence has finished, it has come up with a judgement on which edges
in the right image match a set of the edges from the left image. This determination is made
on the basis of information strictly local to each line processed - there is no information made
available to the matching from outside of the line to which it applies. Being so local, it has no
guarantee of being globally correct, yet it is global correctness that we are trying to achieve. A
very strong global constraint that can be of use here is that of edge connectivity (Figure 3-8 shows
the connectivity of the edges of Figure 3-3). It may be presumed (by general position) that, in
the absence of other information, a connected sequence of edges in one image should be seen as

*0 a connected sequence of edgeb in the other, and that the structure in the scene underlying these
observations may he inferred to be a continuous surface detail or a continuous surface bounding
contour. The individual line correlations make their suggestions of which edges correspond, and a
subsequent cooperative process takes these local judgements and the known connectivity and works
toward a global consensus. Statistics are kept (see section 4.2) on interline disparity differences along
connected sequences of edges, and these measures, where a large disparity difference implies a large
change in depth, provide the evidence for removing edge correspondences which violate observed
bounding contour continuity.



t.,

Edges and conatraints §3.13 1

0 Edge connectivity of the stereo pair
Figure 3-8

3.2.3 - Constraint summrytnal

The three principal constraints on the analysis are that:

the geometry of the cameras be known, and in particular, be the specialized geometry
where image lines correspopd to epipolar lines,

there be no edge reversals along epipolar lines (if they are present, the solution will
invAlve a monotonic subset of them).

0 edge correspondence be consistence with edge connectivity in the images (as these
suggest depth continuity).

i-
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Chapter 4
STATISTICS

4.1 Correspondenee Stati•etic

The best solution for a matching will be determined on the basis of some evaluation function. The
evaluation function takes local quantitative measures of correspondence likelihoods and produces
a global score for a potential solution. Statistical measures play a large role in determining these
local quantitative measures. In the first case one wants to be able to distinguish edges or intensity
variances that are in some sense valid from those that may be merely spurious or a product of the
digitization or imaging processes. Further, one will want to compare edge parameters and intensity
values across images, and have quantitative means for estimating their correspondence likelihoods.
For these tasks, we need some measure of significance in intensity variation.

,4.1.1 - Intensity va•riatiov

A pixel's brightness is measured as the integral of a weight function (for example a Gaussian)
over the local intensity surface. The principal variation, or noise, in a pixel's intensity arises from
characteristics of the sensor used. This variation is referred to as sensor noise,14 and it may be
modelled as a Gaussian process whose statistics may be estimated by measuring the distribution
of interpixcl intensity differences. Say that the variance of interpixel differences - determined by
sampling first differences in horizontal and vertical scanning directions - is Ao, so that its standard

deviation is ad (zero-mean), then the variance in a single pixel's intensity value may be given as
and its standard deviation is

a .

This measure (standard deviation in pixel intensity variation) is used for several image dependent
computations. The full resolution edge operator (having width w 2n+ 1, n 3) could be expected
to have a standard deviation in its difference values of

af = = Vo,. (4-2)

It is a zero-crossing operator, locating edges only at those pixels having a zero-crossing in their second
difference (as defined earlier). However, discretization and camera noise make it necessary to look
at more than just this zero-crossing measure. There can be areas where slight noise effects make the
second difference fluctuate back and forth about zero, giving a great density of zero-crossings. A first
difference threshold, based on the operator's intensity variance statistic af, is used to separate valid
edges from such noise-induced spurious edges - it ensures that the contrast across an edge is greater
than af, i.e. the matching will only deal with edges that are stronger than the noise. A further
complication arises in that the signal variance measured here is not just a function of local image
noise but of course of local image content as well. If the intensity values are changing monotorkcally
in some local area, as on a long gradual slope, discretization noise can give rise to zero-crossings in
the second difference and the first difference measure IP will, if the gradient is steep enough, exceed
of. A technique to remove local image gradient content is to apply a lateral inhibition operator to

t 4 Shot noise, which variel with t, -ignal, is not considered here, but if its characteristics are known then its noise
effects can be compensated for by transforming the brightness values via a nonlinear function.
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the signal ([Binford 1981]). This maps a linear function onto zero (i.e. it maps constant gradients

onto zero).

A variation of this method is used here. At positions where there is found to be a zero-crossing in the
second difference, a least squares line is fit through the support of the first difference operator. Each
pixel intensity value I and its standard deviation ai defines a [I - ai, I + ail local error interval (see
Figure 4-1). If the linear least squares fit to the intensity data passes through this w-lentis corridor,
then the proposed edge on Which the operator is centred is deemed to be laterally inhibited, and
is not maintained as a valid edge. Figure 4-2 shows the output of the convolution with the lateral
inhibition operation turned off - compare this with the edge set after lateral inhibition, as shown in
Figure 3-3. This implementation of the lateral inhibition operation is basically an expedient, doesn't
fit the normal mold of a lateral inhibition operator, and, in being only one dimensional, fails to
take into consideration the more global structure of the image afforded a two dimensional operator.
Its good characteristics are that it is evaluated only at candidate edges and, being centred on a
symmetric operator, is very easy to compute. 15

-+ +
++

Least-squares

H + fit (edge is
inhib Ited)

-0 0 0 H2nd dif'ference

zero-crossi ng
H- H- H- p/xe!

1I I I I I
-3 -2 -1 0' +1 +2 +3

Re/at ive position

Lateral inhibition operator
Figure 4-1

1 5 Further refinements to this stereo process should include giving both the lateral inhibition and the low-pass filters

two-dimensional support.
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Preliminary edges of the stereo pair (before lateral inhibition)
Figure 4-2

The standard deviation in pixel intensity, or, can also be used to determine the accuracy of edge
positioning. Recall that edge position is specified by an interpolation of the zero-crossings of image
intensity second differences (see Figure 3-1). The standard deviation in the second difference measure
is 02 = Vori = 2a,. It is clear that the precision of the edge positioning depends upon this
parameter 02 and the second difference contrast across the edge C = - I'll. Since the variation
in intensity value is being modelled as Gaussian, we can determine the joint distribution of the

variation in the quotient x - as the convolution of the two normal (and equivalent) intensity
second difference variation distributions with mean zero and standard deviation 02. Considering
Figure 4-3, an error interval [-62,021 can be defined about the interpolated edge position. The
probability that the correct edge position passes within 02 of the interpolated position is

002(m--ov

I 2+ f(x)f (y)dd = 0.84166

where f is the Gaussian probability density function of (4-10) with 1/ = 0, a 0 2. This is the
integral of the convolution of the distributions in second difference variation, as Figure 4-4 may
clarify. A convolution of Gaussians is Gaussian, so the variation of this convolution has standard
deviation

0'2
0 -"= • -•- 1.42ai.

1.41

This is a measure of the vertical variance in interpolated position (as Figure 4-3); the horizontal
variance in edge position can be determined from this as

do2  1.42ai (43)

,. -
(4 -
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where d is the distance between second differences, d = 1.0. This is a family of distributions with
dependence on the measured pixel noise ao and the contrast at the edge C.

FI

ýIL Z

Ju, . , .. f

interpolated - --zero-crossing I ,

", position 01

0

Convolution of second difference variation
Y and X are the variations in intensity second

Interpolated edge position accuracy difference of I" and R, respectively, of Figure 4-3.

Figure 4-3 Figure 4-4

4.1.2 - Edge-based correspondences

The edge-based correspondence process uses the pixel intensity variance a0 as one consideration in
evaluating the probability of two edges corresponding. If the distribution of IP values is Gaussian,
then intensity differences can be mapped via the Gaussian cumulative distribution function to obtain
a probability Pi' that left image edge element Ej,i (which for brevity may be written L4) with, say,
intensity value 11,j correspondt to right image edge element E,,j (which may be written Ry) with

intensity value 'r,j.16 In the full resolution matching implemented here each edge Li is treated as
two halfedges - the left side ELI,i and the right side ER1 i - and the intensity values IL1 ,j
and IRI,9 are the sums of the three pixel intensity values centred exactly 2.5 pixels to the left and
the right, respectively (see Figure 3-1). This selection of intensity values removed from the edge
functions to stabilize the metric, keeping those values in the area of high gradient nearest the edge
out of the calculations.

The smoothing operator used is a 4 X 1 convolution with weights 1-2-2-1. When invoked to halve
line resolution t times it gives each pixel in the resultant depiction a support

S(t) = 3 X 2t-1 + S(t - 1), where S(O) = 1,

16Of course an edge doesn't have an htensity; it has an intensity and a contrast, or two intensities.
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In the original image. The standard deviation in intensity value for any pixel at resolution t Is

(4-4)ýt 2"

The standard deviation in intensity difference at resolution t for a first difference operator whose
support is 2n + 1 is

1f 'n" = 0t 1 u,=(4-5)

(for the various smoothing operators used he,';, 1 < n < 3). These standard deviations can
again be used to map intensity differences to correspondence probability estimates via the Gaussian
cumulative distribution function (they are zero-mean). The reduced resolution edge operators use
these measures in separating valid from spurious edges, and the reduced resolution correspondence
process uses them in estimating the likelihood of edges matching. (Note: throughout, a superscript
of T will distinguish parameters of reduced resolution t from those of the full resolution analyais.)

These are the intensity statistics used in the edge finding and the correspondence processes. Other
stati3tics are involved as well. The three edge-based matching schemes - full resolution, reduced
resolution, and constrained-interval - have differing sets of statistically based metrics for measuring
the likelihood of edges matching in their separate domains. In the following, probabilistic measures,
parameters, or data structures are denoted by the prefix P, and the various multiplicative terms
are independent.

Reduced Resolution Correspondence

For reduced resolution matchings, at resolution r - t with support 2n + 1, the probability that the
edge L• corresponds to edge RT in the other image is estimated as:

PReduced = P StatT. X PIntervalT (4-6)

with PStatT. = PLeft. X PRight?. X PContraat.,

and PintervalT is the probability that the interval between

LT and its predecessor LP(j) corresponds to the interval be-

tween R1 " and its predecessor RT in the other image (see
Figure 4-5) - p(i) is not meant to equal i - 1, but rather is
the predecessor along the path from i that has a correlate
Correlate(p(i)) = p(j) in the other image,

where PLeft. is the probability that the left intensity value of edge LI

corresponds to the left intensity value of edge RT in the
otiier image, and is computed as:

PLeft. t GPROB(EL, - ELT. (4-7)

PRightT. is the probability that the right intensity value of edge
LT corresponds to the right intensity value of edge RT in
the other image, and is computed as:

• " . . .



PRight. = GPROB(ER, - ER , (4-8)

GPROB(z) I GPDF(O, of), (4 - 9)
'J-O. 5

(GPDF being the Gaussian probability density function of (4-10)
with parameters mean and atandard deviation)

i GPDF(qha) 1-e.( ) (4-10)

PConte.0, if Contrast(LT) = Contr•st(RT),
[0.0, otherwise.

'S..- .,,-

,/ - tP L/2, , i,

pllane ,/ ', " '" ".. .",

ITnterval compr'ession r'atios,: L11 L2/ L 3

R1 Re2 R3

Interval compression ratio
Figure 4-5

The first three terms of this probability product, composed in PStat. form a static probabilitistic

measure that may be precomputed for any particular epipolar pairing (they can be determined a

priori from the edge properties). The last term, Plnterval T , interval correspondence probability,
must be determined dynamically at each decision point in the Viterbi correlation (it is an a posteriori
measure, depending upon the interval choices available). This interval correspondence probability,
PIntervalT, estimates the probability that the intervals between two pairs of matched edges are the
projections of the same surface. Currently this is computed in one of two ways ... the first being a

L;
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rough intuitive approximation, the other based on a result of Arnold. There seems to be very little
difference in the results of the processing with these measures; Arnold's technique has only been
introduced in this work quite recently, and the difference between the two has not as yet been fully
explored.

In the rough approximation.

Plnteval0))--O75(1.0 - min(LengthT (j), Length"'t )

- ~ max(engthp(j),Len-qth~rp(j))))

where
L Coordinate(Rr) - Coordinate(RT), if Right image interval

- =Coordinate(L7) - Coordinate(Lr), if Left image interval

From [Arnold 1980], the probability, based on an assumption of uniformly distributed surface
orientations, has the cumulative distribution function CDF,

CDF - tan- 1

where R =

a--

b--
X

B =-camera baseline
z =scene distance,
and x = lowest coordinate of edge in left image space.

Rather than int, ."ng this '-obability density function, Arnold uses evaluations of the integrand
over a unifori, k' u, i., te. )main as his probabilistic measures.

It should be - d that the static probabilitistic measure PStat. calculation would lead to a

computat.on of U(n 2 ), while the use of interval correspondence probability PInterval brings the
computation up to O(n 3).

The Full Resolution Correspondence Process

For full resoldtion matching, each edge is treated as a doublet, being a left half and a right half.
The probability that one side of left image edge L corresponds to the same side of right image edge
Rj is estimated as:

PFUll -- PStat1j X PInterval1 ,p(1 )j,p(j) (4 - 11)

with P Stat1i = PSidii X POrient1 i X PReducedRerw pj,

and PInterval,( 1 ),(,,j iefined as above.

if left half of the edge, then the probability that the left intensity value of edge L4
{if corresponds to the left intensity value of edge Ri, (PLeft9., of (4-7)),

PSidi, if right half of the edge, then the probability that the right intensity value of edgeLi corresponds to the right intensity value of edge Ri?, (PRight°,, of (4-8)).
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POrient1 3 - probability that the orientation of edge L4 cor-
responds to the orientation of edge Rj in the other image.

This probability of edges corresponding based upon their image-plane orientation
has been derived in tv o ways, as before. The'first (ad hoe) was to determine a
probabilistic weighting:

POrient, = 0.75(1 - E2), (4 -12)

= 2min(Orientation(L,), Orientation(Ri))
Sirrnax(Orientation(Li), Orientation(Ry))"

where the factor 0.75 makes the probability integrate to 1.0. The other derivation
comes from considering the probability of correspondence of two edges Lq and Ry as
a bivariate distribution in Orientation(Li) and Orientation(Rj) with the probability
density function as depicted in Figure 4-6 (after Arnold).

PReducedRelDsapj = 0.75(1 - (NormdevT )2 ),

NormdevT = normalized duviation from reduced resolution interval disparity.

This latter component provides a btas from the disparities set by the reduced resolution correspon-
dence process. It gives a bias toward edge pairings whose disparity is near that of their interval as
a whole. Consider a potentially corresponding edge pair (Li, Ry), as depicted in Figure 4-7. The
disparity associated with this pair matching is Diapi,j = Coordinate(Li) - Coordinate(Ry). If the
two edges come from a particular reduced resolution interval IntervalT,p(,m),,,p(,), whose average

•T

disparity is ADisp.'P(,),fp(,), where:

Disp•,, - " rA~ispDT Pp(-),P(,%)an
qD28P''np(rn),'tP(n) - 2 and

LT(M) <_L L, and RT < Ri <•r , r,

then the deviation in disparity

PdevT = ADisp,,p(,n),,i,p(n) Disp,, (4 - 13)

biases the probability of the edges Li and R1' corresponding. The normalization is with respect to
the size of the interval. Having not made an analysis of Lhe distribution of this bias parameter, I
use it as a probabilistic weighting 1 - e2.

4 .
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I'

Edge angle probability density function (from [Arnold 1980])
Figure 4-6
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The Constrained-Interval Edge Correspondence Proces.

The line-by-line constrained-interval edge matching, that which follows the cooperative continuity
process, uses An evaluation function nearly identical to that used by the full resolution edge matching:

PInterE1 j = PStatjj X PIntervaljP(1),3 ,W(.) (4-14)

with PStat 3j = PSid1 j X POrienti6 X PlnterRelDispi3 ,
and PIntervalj,p(1 )j,p,(j), PSid1 j, and POrienti, defined as above.
PlnterRelDisp, j = 0.75(1 - (NormdeV)2)

and Normdev = normalized deviation from full resolution interval disparity.

4.1.3 - IntensitV-based correspondencee

The Constrained-Interval Jntensity Correspvndence Process

The line-by-line constrained-interval intensity matching, occuring only after the constrained-interval
edge correspondence process, draws again on the measured pixel intensity variance. Here, the
probability that pixel Pixell,i in one image corresponds to pixel Pixel,,j in the other image is set
as:

PPixelij = PIntensityij X PLinearInterpolateij (4 - 15)

where PIntensityj -= the integral of the Gaussian probability density
function (zero-mean, a == ad), about the intensity difference.

6+0.5

PIntensityij := GPDF(O, Ud), (4- 16)
f6--0.5

6 - Intensity(Pixell,j) - Intensity(Pixel,.,j).

and

PLinearInterpolate -- = 0.75(1 - E 2), (4 - 17)

c = normalized deviation in disparity Dispij from a linear interpolation ovei the
interval in which the pixels occur.

Recall that the edge-based matchings treat edges as doublets, being a left and a right half. Each of
these halves has, independently, the possibility of matching a corresponding edge half in the other
image. If it does match one, it is said to be locked at that point, otherwise it is free. Consider that
an interval is locked on its left side by the right half of its leftmost edge, and on the right side by the
left half of its rightmost edge. For the linear interpolation, if both sides of the interval are locked,
then the deviation from a linear interpolation at a particular pixel pairing is the difference between
its calculated disparity Dispij and the associated interpolated disparity at that point. Figure 4-8
shows this situation. Figure 4-9 indicates the means for determining the deviation when one side of
the interval is free (fails to be locked). If both are free, as shown in Figure 4-10, then 1 - 0.
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4.1.4 - Summary of correlation statistics

The two types of correlation statistics used in the processing are:

* intensity based, and using the Gaussian probability density function to estimate the
likelihood of edges from opposite images inatching, and

* geometrically based, where estimates of the distribution of scene characteristics are
used to specify edge correspondence probabilities.

4.2 Cooperative Continuity Constraint Statistics

The cooperative continuity constraint process is also statistic driven. Each edge in an image has
two-dimensionr.l connectivity to the edges to which it is proximal (see Figure 4-11). While the full
resolution correspondences are being formed, measures of the variation in disparity Dispi, between
connected edges are made and accumulated to give a mean and standard deviation [;&, OLDip] of
these inter-edge disparity differences. What these differences measure is the implied change in depth
along the connected sequence of edges. Clearly these changes should be small along a continuous
three-space curve. The accumulated disparity difference statistics 114,• or•p] provide a metric for
distinguishing between the good and the questionable correspondences chosen by the Modified Viterbi
correlation - those disparity differences which lie outside of the [ - aDiep, ;A + 0 vip1 difference
window suggest abrupt changes in depth, discontinuities in the supposed continuous 3-space curves
giving rise to the involved image edges. Reasons wili be given in section 6-3 for a more arbitrary
setting of ODip = 1.0.

4

4 .
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Figure 4-11
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Chapter 545

THE MODIFIED
VITERBI CORRELATION ALGORITHM

5.1 The Correspondence Problem

When I first looked at the computation task of matching edges from one image with those in tlhe
other image, I thought in terms of having a heuristically bounded search which would optimize some
metric. The combinatorics of matching m edges from an epipolar line of one image with n edges from
the corresponding epipolar line in the other image, allowing for strictly one-to-one matching but notconsidering other distinguishing characteristics, is of order (min(m,n))!, which, for m =" n is m!.

For a typical line of the Control Data Corporation imagery, m - n = 11, and 11! = 39,916,800.
A typical line of the Night Vision Laboratory imagery has m = n =: 30, and 30! > 2.65 X 1082.
Obviously the combinatorics are rather overwhelming, and I put a lot of effort into analysis and
design, trying to find methods to reduce or bound this cost. Certain obvious approaches come to
mind, and these were implemented and tested:

using a hierarchic scheme, where edge strength is used to order combinations, and
correspondences are only allowed within strength intervals;
precluding edges of differing contrasts from corresponding;
limiting disparity values to a certain range;

9 using a coarse to fine strategy, reducing image resolution to enable working first with
the, fewer reduced resolution edges.

In the interests of both parallelism and robustness, it was critical for the design
that the results of the stereo matching be independent for each line processed (in
contrast with the algorithm used in [Henderson 1979]), so I could not allow the
solution from line j to affect the order or results for the processing of scanline j + 1
(or j - 1or in , j for that matter), and this was one common heuristic that had
to be avoided.

Accomapanying these processing constraints was a quite involved evaluation function capable of
estimating the maximum score attainable for the correlation from a particular set of correspondences.
This use of an evaluation function estimator allowed the introduction of the extensive pruning of a
branch and bound algorithm. Even with it, though, runs for certain lines took near minutes (on a
DEC KL-10). A better approach was needed, and it appeared in a dynamic programming variant
called the Viterbi algorithm.

The N'ýierbi algorithm is defined as a recursive optimal solution to the problem of estimating the
state sequence of a discrete-time finite-state Markov process observed in memoryless noise ([Forney
1973]). The underlying Markov process is characterized as follows:
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Time is discrete

The state t m at time m is one of a finite number N of states n, 1 • n • N; ie.
the state space X is simply {1, 2,..., N).

Assuming the process runs in time domain T where t E [1, MJ, and the initial and
final states xZ and ZM are known, the state sequence, mapping T -+ X, can
be represented as a vector S = (Z1, X2...,zM).

The process is Markov in the sense that the probability P(zmn+l I l, M2, ... , zM) of
being in state Zm+1 at time rn + 1, given all states up to time m depends
only on the state xZ at time rn:

P(zm+i I ZlX2,...,zm) = P(x,+i I x.,), and

P(S) = 1 II I .(5-1)

In the problem addressed here of finding the optimal solution to the matching of edges from the left
and right images, corresponding to the state space X is the set of left image edges (numbered 1 to N
along a particular epipolar line); corresponding to the time domain T is the set of right image edges
(numbered 1 to M along the corresponding epipolar line). The state sequence can be represented as
a mapping:

f T'-+X,

or as a vector:

S1 = (m, n)I(min-'n), m ET, n EX}
4is a binary relation indicating that in in T corresponds to n in X

Regardless of representation, it is the record of correspondences for the various edges in T.

5.2 Direct Implementation of the Viterbi Algorithm

One of the assumptions capitalized on in the branch and bound scheme mentioned above held that
there could be no edge reversals in the image plane. This meant that an edge sequence LI,L. in
one image, with i < j, and i,j being edge indices, could not coxrespond to an edge sequence Rk, RI
in the other image, if k > I (refer to Figure 3-6). This is the edge reversal constraint, and was
integral to the pruning. As it happens, this same constraint is the key to the use of the Viterbi
algorithm. 17 It provides a monotonicity condition satisfying the sequencing constraint in the finite-
state correspondence process. Consider Figure 5-1. What distinguishes the Viterbi technique from
normal search is the ability to partition the original problem into two subproblems, each of which
can be solved optimally and whose results can be processed to yield a global optimum for the original
problem ('optimal' with respect to an evaluation function on the chosen parameters). In a recursive
way, each of the subproblems may be divided and the solution process repeated. In particular, one
can partition the problem of assigning correspondences among two tuples of edges Edge8etg and
Edgesetr about some tentative pairing (Rj i-4), solve the associated correspondence problems of
edges lying to the left of Li in Edgesetj with those lying to the left of Rj in Edgeset,. and edges

(1 7 Rubin 19801 describes an image processing search technique, the Locus search, which lo based on the Viterbi
algorithm.

0
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lying to the right of Li in Edge8etj with those lying to the right of R1 in Edgeeet,. ( i-i represents
a binary relation, and (a 4b) is read 'a in Edgeset, corresponds to b in Edgeset1 ".)

R 9h o

edges 1 2'' '-Right

mage
edges

S 2 ,/ N-i N

Typical Right and Left Image Corresponding Epipolar Line Edges
Edgesetj - (L1, L2, .... ., Li, ... ., LN-, LN),

Edgesetr (R,, R2,..., Rj,..., RM-,, RM)
Figure 5-1

The optimal solution for the line correlation is that sequence of edge pairings from the left and
right image lines which is consistent with this monotonicity constraint and maximizes some score.
The score used here was based on summing the individual probability measures for each possible
edge-pair correspondence (4-11). This summing favours the densest possible surface intrepretation
([Julesz 1976]). Other scorings, such as normalizing, summing weighted probability contributions, or
taking the (more standard) product of probabilities (as defined in (5-3)) do not support this density
preference. Consider a two dimensional array Parray[1 : N, I M] with Edgesetr along the bottom
axis, and Edgeseti up the left side axis, as in Figure 5-2. The Viterbi solution implemented here
develops from the left of the image (right image edge index of 1) to the right of the image (right
image edge index of M), and within this, from the bottom (left image index of 1) to the top (left
image index of N). The first set of subproblems is all those involving the assignment of R 1 . The
second set of subproblems deals with R 2 using the results of the analysis of R 1 . Thus for M edges
in the right image line, there are M subproblem sets. A useful mnemonic to bear in mind about
this processing is to ask, at each possible pairing (Rj -L•), "what is the best possible solution to the
left of (iIj) if (Rj "-+Lj)". The set of solutions (including the optimal) is built up by evaluating this
for all (i,j).

. .- .- ,.- ...- . - •-
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Tscore 7score Tscore
S, ,, Lscore ... I score Lscore

----- , £T" T-"CO... ESO

Tscore 7score Tscore
n'- ,,s Lscore , score Lscore

img s orel Tsr.orele scork 7"score
ilse Lscore L score .., Lscor ,.., Lscor'e _

edges + . --. .
SIL u

,____,__________ , __,____,_, ,____7soe score T score
SLscore Lscore ... Lscore ... .

0Tscore score

L score Lscore .. . .0_ _ _[

1 2 j ... ,M-1 m
Right Image edges

Viterbi Dynamic Programming Array
Fiaure 5-2

The matching process is monotonic in both left image edge indices { i I i E 11, N], Li E Edgesets },
and right image edge indices {j I i E [1, MJ, Ri E Edge3et, }. This monotonicity means that the
solution for the pairing (R1 i- .; need only examine that portion of Parrav[i : N, 1 : M] where
n _< i, m < j, i.e.' the rectangular subarray whose top right corner is ParraV[i,j] (otherwise, say
if (Ry+1 '4L4-) preceded (R1? i4Lf), we note that j + 1 > j and the monotonicity is violated).
The solution for the pairing (ij) is the best assignment of edges fromn Edgeseti,, p E [1, i] and
Edgeset,,q),q E [1,j], that is, for the edges in the two sets up to and including edges L and Ri.
A scoring function is defined for the various transitions possible in the processing, and these can
usually be limited (because of the monotonicity) to the obvious three:

{(K, ) = (--1,0), (-1,-1), (0, -1)}. (5 - 2)

Through this, subproblem (Edgeset1,iEdgeset,,d) can be solved after subproblem (Edgeseti,i 1 ,
Edgeset,,7 ) and subproblem (Edgesetj,i, Edgeaetr,,j 1 ) are solved (these both imply the solution of
subproblem (Edgeset1 ,<_1, Edgeset,,y_1)). Thus, the decision for. any pairing (ij) can be made with
just 3 scoring comparisons, making the total line correlation computation O(MN) (or O(N2 ), where
M and N are of the same order).

4:
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An entry in Parray[i,j] has associated with it:
* a local score, Localscore,

* a cumulative score (from the left), Totalscore, and
* an indicator of the pairing (k, L), k < i, I < j, that is the predecessor to (i, j) in the

solution that contains (Ry /4L.)

Each such entry in Parray is linked to other entries in Parray via these predecessor indicators. A
chain of these entries contains a locally optimal solution to the line correspondence problem. The
optimal chain over this entire set of chains is the global optimum for the whole line correlation
(note: the chain of the best solution will begin with an entry in column M, specifically, the highest
scoring entry in that column).

5.3 Modifications to the Viterbi Algorithm

The preceding overview of the scoring mechanism has been slightly misleading, as it doesn't take into
account several issues ... those which relate to specific aspects of the various correspondence processes
to be performed. The four correspondence processes - reduced resolution edge, full resolution edge,
constrained-interval edge, and constrained-interval intensity - each have characteristics which make
the above general outline inappropriate. The principal variation comes from:

* the treatment of unassignable pixels or edges (those which may be obscured in the
other image, or be merely spurious).

The complication this introduces is apparent when looking at the optimization metric
used by the Viterbi method. Probabilities are treated multiplicatively (5-3). If one of
the right image edges, R5 has no correlate in the left image, then the optimal solution
should have P(Rj i-4Lj) = 0, Vi E [1, N]. But even a single zero probability will take
the total probability product to zero, since

P(S) = ] P(xr.+l ! iz) = 0, if P(xi I x.-1)) = 0, for i < M. (5-3)

Viterbi was not designed with time domain skipping in mind (although having a par-
ticular state unused would present no problem). The scoring mechanism must allow
unmatched pixels and edges in both the left and the right images.

Two other issues also affect the implementation of the Viterbi algorithm. These are:
• the metrics used in the scoring. One, interval compression ratio, drives the computa-

tion to O(N 3 ).

The information needed to compute the lefa and right image interval ratio will (in
general) not be available to the local (b., 64) transition rule of (5-2). It is conceivable,
especially when considering the possibilities of the prior unassigned pixel or edge varia-
tion, that this computatio." may need to look as far back as the first left image edge!
The transition mechanism should minimize this search while maintaining optimality.

the edge index numbering conventions (in certain cases each edge is considered a
doublet - its left and right sides).

- . .- " -f,...ft,..-., ,.'. . . ..,4
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With edges split into a left and a right half, the computation is increased (proportional
to the order), and the (b., 6.) transition mechanism (5-2) may need to be altered. The
efficiencies possible in that the left sides of edges cannot match the right sides of edges
should be used in reducing the increased combinatorics arising from the edge splitting.

Considering these difficulties one at a time, the variations they introduce are as follows:

[Unassignable edges] Edges from either image that are either spurious, or are obscured in the other
image, s", hr left unassigned by the matching process. This means that chains of pairings
(in the v toluticns) may not be joining adjacent edges - there must be provision for
skipping - ver certain (unassigned) edges in these chains. This is accomplished by allowing
an Come Rj to match the null edge L-%. The alternative, not providing for the interpretation
of cei: ain edges as being spurious or obscured, is both unrealistic and unacceptable - there
will always be edges which have either no visible correlate in the other image or no physical
justification in the scene.

Unmatched pixels from the constrained-interval intensity correspondence process don't re-
quire such special-case treatment, as they are positioned by interpolation.

[Scoring metrics] Interval compression ratio is a measure of the perspective foreshortening of scene
surfaces. This is recognized in the psychological literature as a cue to stereopsis ([Blakemore
1970]). Its computation here requires looking back from a pairing (R' A4L,) in Parray to
the preceding edge pairing, and since this need not necessarily be an adjacent edge (L/_1
or Ri- 1), the entire incident subarray may need to be searched. In fact the algorithm can
be structured such that the preceding column (Parrayfn, j - 1], n E [1, i - 1]) is all that is
required here. Nevertheless, this takes the computation for the three edge-based matchings
to O(N 3) from O(N 2 ).

A very important implementation detail shculd be noticed here: to guarantee optimality
in those cases where unassigned edges appear in the intervals considered does. in general,.
require an N 2 search over the preceding subarray, making the computation O(N 4 ) where
these occur. The problem is that when using interval compression ratio unassigned pairings
of edge R1 cannot make an optimal choice for their predecessor since, as indicated, the choice
will depend upon the assigned pairing of some edge to the right of RI. Savings can be made.
on this by maintaining lists of possible predecessors for each unassigned pairing (RA 4Lio).
Since only predecessor paths to assigned pairings will affect the decision, somewhat less search
will be necessary in finding the optimal path (in the degenerate case this would still be N 2 ).
A near-optimal solution is found here, where each unassigned pairing is forced to make a
decision about its predecessor.

Constrained-interval intensity matching is not edge-based, so uses quite different optimization
metrics from those so far mentioned.

S2. . AL..-Z S" .. S :.. X t ." *: " - • t , - -
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[Edge numbering] Each image edge in the full resolution matching is treated as a doublet, its left
and its right sides. A left side of an edge can only match a left side of another edge, and a
right side of an edge can only match a right side. This splitting allows contrast reversals to be
handled correctly, occuring, for example, when a grey object is seen above a checker-board
with the left image seeing it in relief against the white, and the right image seeing it in
relief against the black. Psychological evidence suggests that human vision cannot achieve
stereopsis under conditions of such contrast reversal whereas the algorithmic mechanisms in
a computational vision scheme will enable edge matching here (this shows a situation where
deviating from the characteristics of the human vision system allows a greater flexibility in
the processing). Providing for this special edge treatment doubles the number of edges with
which the system must deal, so multiplies the standard correlation computation of O(N3)
by 22 = 8 in time and 22 - 4 in space. With the consideration nf half-edge polarity, the
increased time complexity is reduced from 8 to 22 - 4.

The reduced resolution correspondence process doesn't allow contrast reversals, so doesn't
have this accompanying increase in computation cost.

5.3.1 - Edge-based matching

The chapter on statistics describes in fair detail the optimization metrics used in the edge-based
matchings - it should be referred to for computational specifics of the general outline that follows
here.
The reduced resolution correspondence process evaluates the matchings of reduced resolution edges
on the basis of:

1) contrast about the edge,

2) intensity difference about the edge (both sides),
3) interval compression ratio between matched edges.

Since it does not allow contrast reversals, it does not treat edges as doublets. Rather, each edge
enters the correlation only once, and the Parray has vertical indices { i I i E [1, NJ, LT E EdgeIetT }
and horizontal indices { j j E [1, M], RT E rdgeset' }. The suggestion here is that it is the high-
frequency components of the images which will exhibit this contrast variation, and the low-frequency
components will be expected to be less varying. The intensity variation metric is the product of the
probabilities that the left sides of the edges correspond and the right sides of the edges correspond,
and this is just the product of the two integrals of the Gaussian probability density functions, as
detailed in (4-9). Interval compression ratio usage means that this computation is O(N 3) in edges.
Since the reduced resolution correspondence process is so similar to the full resolution correspondence
process, yet simpler in its handling of just single edges (as opposed to doublets), the example of the
Viterbi algorithm correlation to be presented at the end of this chapter will detail only the processing
of a full resolution line pair -- the functionir.g of the reduced resolution correspondence process
should be fairly obvious once the full resolution process is understood. Section 5-4 will present this
processing example.

As mentioned, in the full resolution correspondence process, edges are treated as doublets, their left
and right sides, so the matcher evaluates the correspondences of image half-edges on the basis of:

1) intensity difference at the appropriate side of the edge,

2) orientation of the edges,
4 3) interval compression ratio between this edge and its predecessor,

4) disparity bias as set by the reduced resolution correspondence process.
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Each edge enters the correlation twice, giving the Parray vertical indices { i I i E [2, 2N + 1], L M E
Edgesetl ), and horizontal indices {j I j E [2, 2M + 1], R1• E Edgeset, }. The intensity variation
metric measures the probability that the sides of the edges correspond, and this is just the integral
of the Gaussian probability density function as detailed in (4-9). The orientations of the edges, an
measured in roughly n degree increments (determined by a scatter analysis) affect the optimization
scoring as indicated in (4-12). (4-13) outlines the computation of the disparity bias measure.
This, in conjunction with the search interval definition of the reduced resolution correspondence,
constrains the range of choices in full resolution edge correspondences.1 8 Again, the use of interval
compression ratio means that the correlation computation is O(N 3) in half-edges. The solution to
the correspondence problem for edges along coniugate epkipolar lines is specified by the set:

U(j,I ý .. 1 .1 ), (5 ý- 4)

*v'?ýere Li and Ry refer to half-edges of th., •ull-resoiition correspondence process.

For constrained-interval edge matching, the results of the previous two (reduced and full resolution)
correspondence processes have acted to associate together intervals along conjugate epipolar lines.
The edges in these intervals which failed to find matches in the full correspondence process are re-
examined to see whether the more tightly constraining context will now permit them to be matched
across images. Edges are again treated as doublets, their left and right sides. Here, the correlator
evaluates the correspondences of these image half-edges on the basis of:

1) intensity difference at the appropriate side of the edge,

2) orientation of the edges,
3) interval vomprcssion ratio between this edge and its predecessor,

4) disparity bias as set by the full resolution correspondence process.

Notice that these are almost identical to the optimization metrics used for full resolution matching.
The difference is that in constrained-interval matching the bias measure is about the centre of the
interval in which the edges find themselves after the full resolution correspondence process, rather
than about the centre of the intervals, defined by the reduced resolution matching.

5.3.2 - Intensity-based ratehing

The constrained-interval intensity correspondence process finds the optimal cornespondence of irt-
dividual pixels. It looks at pixels in the intervals associated together by the reduced resolution, full
resolution and constrained-interval edge correspondence processes. (4-16) indicates the probabilistic
measures used for this optimization. The matching of intensity values is a standard correlation
technique, and its analysis is based on the image intensity variance statistics measured at the start
of the processing. The role of the PLinearinterpolate metric (4-17) is a little less obvious. It func-
tions to pull the implied surface toward a linear interpolation with end point conditions as indicated
in Figures 4-8 through 4-10. Perhaps a better metric would be one which used a smoothing measure,
looking for continuity in a few derivatives of the implied surface slope. Further refinements to this
stereo process will include incorporation of an improved interpolation metric.

1 8 It is interesting to note, as pointed out in [Schurner 19791, that low spatial frequency gratings %an be fused at much
larger disparities than can higher spatial frequency gratings.
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5.4 A Line-Pair Viterbi Edge Correlation

This section demonstrates the processing of the Viterbi algorithm on a pair of corresponding full
resolution image lines. The line-pair are numbers 2448 of the Control Data images, and are seen in
Figure 5-3 (edge indices are in octal). The possible right to left edge pairings, indicated by right:
left 1, left2 , . . ., leftn;, are as follows:

(0:6; 3:3,7,11,13,15; 4:10,12,14; 5:7,11,13,15; 6:10,12,14; 7:11,13,15; 10:12,14,22;
11:7,11,13,15; 13:10,12,14; 18:11,13,15; 14:22; 15:23; 16:24; 17:25; 30:26;

21:27; 22:30; 28:31; 24:34; 25:35; 26:36; 27:37,41; 80:40; 81:37,41;)

•"-i870 
3 '1

IL

6'6

S . . . . . . .._ 5 ,_ _ . . . . . . . ,1 ,1 ,1_ . . . . . ._ 4 7_ . . . . .._ _ 0 ,5 . . . . . . 7 4 3 3.. . 0 1 . . . . 3 ,3 7, . . .

215 6

111 6s'

2' 1 2 R 116 E p_ 2 6o 3 7
10 

37'

66

Edges of left and right image line 244
Figure 5-3

The right image line is shown above ,t~s corresponding left image line. Half-edge indices increase

from left to right -- from 2 to 33 for •,he right image line and from 2 to 41 for the left image

line (left half-edges are nmbmered even, and c.•ght half-edges are numbered odd). Figure 5-4 locates

this line pair in the two images. The reduced ,t.solution correlation for this pair of lines resulted

inthe edge correspondences indicated by the diagonal strokes between edge numbers (for example

LI , , ,-.
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(2/3, 6/7) correspond, as do (4/5, 10/11)). These matchings constrain the possible pairings of the full
resolution correspondence process. (4-13) indicates a biasing mechanism affecting the probabilistic
estimates for matching full resolution edges from corresponding intervals. The interval shown there
would seem to be that delimited by nearest-neighbour matched edges (nearest-neighbour diagonal
markings in the profiles of Figure 5-3) -- in fact this interval constraint is loosened somewhat, and
an interval is defined as the union of thiu interval and thbse neighbouring it. The biasing uses this
"broader range for its probability estimates, and only edges in such corresponding broader intervals
are considered as candidates for matching in the full resolution correspondence process. The reason
for this redefinition of intervals is that the reduced resolution correspondence process can make
mistakes, and a little flexible interpretation is called for in using its suggested coastraints). It could
also be argued that a low to high resolution matching is not an adequate model for correspondence
control, and again the broader scope diminishes the negative aspects of this strategy.1i

at

The horizontal mark in the images indicates line 2448
*i Figure 5-4

A linked list depiction of the Viterbi array Parray, Figure 5-5 below, contains all of the Localscore
* and Totalscore measures and the associated Predeccssor for each possible full resolution edge
* •pairing. The designation -n for a left edge index indicates that the right edge is being considered as

* paired with the null edge LT. Tihis should be interpreted as meaning that the right edge is spurious
and temporarily positioned between L, and L,+I, or is obscured from view from the left imaging
point and again positioned between L, and L,,+,. Figure 5-6 shows the two dimensional structure
of the Parray, with the arrows indicating the predecessor links specified in Figure 5-5. The solution
is marked in bold.

t
1
9
The recent, IMayhew 1981] paper discusses more comprehensive control strategies.

6'
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h(ýRL TotaS LocalPre 46:(6-15 2.078 26) 92:(11,13 3.563, 0.332 74) 1388(16,244.474,0.205 135)
L:U. , 2(2-3 0.'000 - 1 47:(6,-6 0.914 3) 93:(11,-43 3.636 75) 139-(16-244.288 135'
2:(2,-3 0.000 -) 48:(6,7 '1.686 37) 94:(11,-14 3.770 -6) r1-0.v-'--4 i4 34
3:(2,-4 0.000 -) 49:(6,10 2.075,0.38937) 95:(11,15 3.886,0.117 76) 141:(17,265.417,0.943 138)
4:(2,-5 0.000 -)50-(6,10 2.078 38) 96:(1 1,r5 3.770 76) 142:(17 -25 4.474 138)
St(2,6 0.914, 0.914 -) 51(6,-il 2.832 39) 97:(11,-16 3.770 76) PT-(20:-25 5.417 141)
6:ý2,6 0.000 52:(6,12 3.231, 0.398 39) 98:(11,17 3.770 76) 144,(20,26 6.359, 0.9411 141)
7:(3,-2 0.000 1 53:(6,-12 2.832 39) 99:(11,-20 3.770 76) 145: 20,-26 5.417 141)
8:(3,3 0.059, 0.059 1) 54:(6,-13 2.832 39) 100:(11,-21 3.770 76) 146:(21,-26 6.359 144)
9:(3,-3 0.000 2) 55:(6,14 3.083, 0.250 39) 101:(1122 3.770 76 147:(21,27 7.326,0.967 144)
iO:(3,-4 0.000 3) 56:(6,-14 2.832 39) i1i.x2,-r'•6 87) 148:(21,-27 6.359 144)
11:(3,-5 0.000 4) 57:(6,15 2.832 392 103:(12,10 1.772, 0.086 87) 149:(22,-27 7.326 147)
12:(3,-6 0.914 5) 58:(7,-6 0.914 47) 104:(12,-10 2.078 88) 150o(22,30 8.249, 0.922 147)
13:(3,7 1.686, 0.771 5) 59:(7,-7 1.686 48) 105:(12,-11 2.832 90) 151:Q22,-30 7.326 147)
14:(3,-7 0.914 5) 60:(7,-10 2.078 50) 106:(12,12 3.377, 0.545 90) V-5J2(23,-30W8.49 T50)

15:(3,-10 0.914 .5) 61:(7,11 2.372, 0.297 49) 107:(12,-12 3.231 91) 1631(23,319.032,0.783 150)
16:(3,11 1.054, 0.140 5) 62:(7,-11 2.832 51) 108:(12,-13 3.636 93) 154:(23,31 8.249 150)
17:(3,-41 0.914 5) 63:(7,-12 3.231 52) 109:(12,14 3.689, 0.053 93) 155:(24,-31 9.032 T3I
8:(3,-12 0.914 5) 64:(7,13 3.636, 0.405 52) 110t(12,-14 3.770 V4) 156:(24,32 9.142, 0.110 153)

19:(3,13 0.933, 0.019 5) 65:(7,-13 3.231 52) 111:(12,-15 3.886 95) 157:(24,32 9.032 153)
20:(3,-13 0.914 51) 66:(7,-14 3.231 52) 112:(12,-16 3.886 95) 158:(24,-33 9.032 153)
21:(3,-14 0.914 5) 67:(7,15 3.721, 0.490 52) 113:(12,-17 3.8E6 95) 159,(24,34 9.498, 0.466 153)
22:(3,15 0.917,0.003 5) 68:7.-15 3.231 114:(12,-20 3.886 95) 160:24,-34 9.032 153
23:M -15 0.914 5 9:(1•,-t 0.14 - ) 115:(12,-21 3.886 95) 161:(25,-34 9.498"24:(7,5,6 0.914 12 70:(10,-7 1.686 64) 121:(133 3.46 90 162T(25,35 10.279, 0.781 159)

108 569(2)3 1146077 165)223.8

25:(4,-7 1.686 13) 71:(10,-10 2.078 67) 117:(13,-10 2.078 104) 163:Q545 9..4.98 5
26:(4,102.078,0.393 13) 72:(10,-21 2.832 62) 118:(13,11 2.082, 0.004 104) 164:(26,-35 11.279 168)
27:(4,-10 1.686 13) 73:(10,12 2.854, 0.022 62) 119:(13,-11 2.832 105) 1653(26,36 10.768, 0.489 162)
28:(4,-1l 1.686 13) 74:(10,-12 3.231 63) 120:(13,-12 3.377 106) 166:0,-360 17.429 168)
29:(4,12 1.733, 0.048 13) 75:(10,-13 3.636 64) 121:(13,13 3.467, 0.090106) 7 3 4103 168
30:(4,-12 1.686 13) 76:(1 1,43.7 70, 0.133 64) 122:(13,-13 3.636 108) 1 -i(27-37 11.542, 0.773165)
31:(4,-13 1.686 13) 77:(10,-14 3.636 64) 123:(13,14 3.770 110) 169:(27,-37 10.768 165)
32:(4,14 1.699, 0.013 13) 78:(10,-15 3.721 67) 1324:(13,-2 4.006, 0.236110) 170:(27,-40 10.768 165)
33:(4,-14 1.686 13) 79:(10,-16 3.721 67) i25(13,25 4.8, 113) 171:(27,41 11.025, 0.256165)

•34:(4?-15 1.686 13) 80:(10,-17 3.721 67) 126:(13,-16 3.886 112) 172:(27,-41 10.768 165)
S35:(5,-6 0.914 24) 81:(10,-20 3.721 67) 127:(13,-17 3.886 113) "17 3:(30,-36 10.768 167)
S36:(5,7 1.052, 0.138 24) 82:(10,-21 3,721 67) 128:(13,-20 3.886 114) 17 4:(30,-37 11.542 16.8)

-. •37:(5,-7 1.686 25) 83:(10,22 3.736, 0.014 67) 129:(13,-21 3.886 115) 175:(30,40Ol1.762p,0.220 168)
38':(5,-10 2.078 26) 84:(00,42 3.721 67) 130:Q3,-22 3.886 116) 176:(30,-40 11.542 16l8)
39:(5,112.832, 0 ,754 26) 8 :1 ,6 0.914 69 ) 131:(14,-21 4.006 T2_41 177:(30,-481 101:542 168140:(5,:11 2.078 26) 86:(11,7 0.981, 0.067 60) 132:(14,22 4.148, 0.143 124) 1-78:(3 1, 10.7-68 173)
41:(5,-12 2.078 26) 87:(11,-7 1.686 70) • 4 2 4.006 124) 179:(31,37 11.125, 0.355 173)
42:(5,13 2.296, 0.217 26) 88:(11,-10 2.078 71) 13T 1,- 2 -I 5 2 -- 4.148 132) 180:(361,-37 11.5,12 174)
43:(5,-13 2.078 26) 89:(11,11 2.214, 0.165 71) 135 t(15, 23 4.26H, 0.120 132) 18 1:(31,-40 11.762 175)

4,:(5,-14 2.078 26) 90:(11,-11 2.832 72) 136: 15,-23 4.148 132) 182t(31,41 11.986,0.224 175)
45:(5,15 2.185, 0.107 26) 91:(11,-12 Zý.231 74) 3 ,2 TS .183: (31,-1 11.762 1751

Linked list depiction of Viterbi Parray, with Right and Left half-edge indices, Totalseore and
Localscore measures, and Predecessor links. The solution is shown in boldface, starting at 182

(read up from the bottom right).
Figure 5-5

In the notation of (5-4), the solution for this line pair is:

{ (2, 6), (3, 7), (4, 10), (5, 11), (6, 12), (7, 13), (10, 14), (13, 15), (14, 22),(15, 23), (16, 24),
(17, 25), (20, 26), (21, 27), (22, 30), (23, 31), (24, 34), (25, 35),(26, 36), (27, 37), (30, 40), (31, 41) }

Right image half-edges 11, 12, 32, and 33 have no correlate in the left image.

The consistency enforcement process takes these locally-based edge correspondences, removes those
which violate global contour continuity (as described earlier), and propagates two-dimensional con-
nectivity in the images to add edge correspondences. This leaves a kernel of good correspondences
which provide a context for the constrained-interval edge and intensity correspondence processes.
Figures 5-7, 5-8, and 5-9 indicate the result of these final correlations on the line pair shown above
(lines 2448 in tile left and right images). Figure 5-7 plots left image coordinates along the horizontal
axis against right image coordinates up the vertical axis. The arrow heads (+---+) show the left and
right half-edge lockings (of Figures 4-8 through 4-10). The >-and [<symbols indicate edge pairings

K.

. . .-- - ~ ~ - - - - .-
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Viterbi array correspondences of left and right image line 244
The x's indicate edge pairings, while the circles show null correspondences

Figure -

added by the constrained- interval edge matching, again, with the direction of the arrow indicating
the polarity or the locking. The little dots mark pixel correspondeitces. Figure 5-8 is a left image
coordinate versus disparityl representation of Figure 5-.7 There are unassigned left image edges at
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those positions where the correspondence process determines the right image pixels are either oc-
cluded or are too dissimilar to be matched. Figure 5-9 has an interpolated depiction of the edge and
intensity matches of Figure 5-8. Remember that this plot is disparity - not depth. The two spikes
to the right of the figure are the leading edge of the large building at the bottom of the image and a
vertical surface of the small building to the right. Since the images are perspective pTojections, the
vertical surfaces (and places of intersection of vertical surfaces - corners) will appear as slanted in
a disparity versus position depiction. Referring back to Figure 5-4 will clarify this notion.

244
352

234

- 1650
bO

-• 116

.......................................... I ...... ........ ........ *•,45....
left edge coordinate

Edge and Intensity correspondences (---+ preliminary edge matches)\
Figure( subsequent edge matches
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Edge Disparities
Figure 5-8
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Interpolated Edge and Intensity Disparities
Refer to Figure 5-4. Notice that the intensity-based matching correctly maps the hollow
center of the building to the left, and follows up the edges of the two buildings to the
right.. The fact that the imaging is a perspective projection makes the building corners
appear to be non-vertical (see Figure 5-4) - in fact the vertical vanishing point is at
the center of the image. The slope of the wall between the third and fourth double
arrows is consistent with the local edge matchings and intensity values - the situation
is as suggested in Figure 4-8. Such mappings will be seen to occur fairly often in the
intensity-based correspondence process, and show the need for more global analysis.

Figure 5-9

4



Chapter o 5

3-SPACE CONSISTENCY

6.1 Using Continuity of Bounding Contours

The edge-based matching described in the preceding sections dealt with line-pairs from the leat
and right images one at a time. I purposefully kept the analysis from incorporating the results of
prior line-pair analyses into the analysis of subsequent line-pairs. Quite obviously there is a stro 9.
relationship between the edges on adjacent image lines, and the results of the correlation of one
line-pair should be expected to bear some resemblance to the results of the correlation of its adjacent
line-pairs. This follows directly from the continuous nature of surfaces. By far the greatest area in
our field of view is made up of smoothly varying continuous surfaces -the discontinuities between
surfaces occupy only a small (but very important) part of that view. The surfaces are generally
co~ntinuous, and we expect the -bounding contours of those surfaces to be generally continuous.

The edge-based description aims its analysis at those bounding contours - be they boundaries in the
intensity domain, as delimit surface detail, or in 3-space, arising as occluding (perhaps self-occluding)
contours. The projective connectivity analysis, that part of the edge finding operation which links
together neighbouring edges, joins edges that lie along such bounding contours (see Figure 3-8 for
a depiction of edge connectivity). One would hope that the correspondence process would assign
similar disparity measures to adjacent edges along these contours - if the contour were fiat and

r orthogonal to the line-of-sight then the disparities should all be roughly the same, if the contour
r were sloping off away from the imaging plane then the disparities of the receding edges should be1 monotonically decreasing. This relationship of proximal edges having similar disparity can be used
V. as a global constraint on the correspondence analysis.

Figure 6-1 depicts these adjacent disparities along connected stretches of edges in the leat and right
- images. In this depiction the connectivity (seen in Figure 3-8) is used to progress from edge to

neighbouring edge, but rather than drawing at the coordinates being followed, as in Figure 3-8, the
coordinate of the correlate of the edge is used. (An alternate way to view this is as drawing the
coordinate plus its disparity.) Edges adjacent in the images will be seen nicely connected if they have
similar disparities, but will be wildly separated (horizontally) if their disparities differ significantly.

V.. Chapter 7 gives a fuller explanation of this depiction technique.
The relationship between continuity in three-space and connectivity in image space is apparent in
this depiction. Wherever there is a horizontal deviation between image lines, there is either an abrupt
break in contour continuity or, more likely, an error in edge correspondence. So edge connectivity

F. provides inference on the global constraint of contour continuity. The two questions of interest here
* are - at what stage of the processing should this constraint. be introduced, and how should it be

implemented in the system?

6.1.1 -. The introduction of the connectivity conatrainit

¼ If one were to propagate the results of analysis of line-pair 1 to the processing of line-pair 2, and
then these results to line-pair 3, etc., we would be:

0 introducing a directional bias to the processing - how would the whole image analysis
differ were the processing to run instead from bottom to top?;

0 running the risk of sending the correspondence process oil into irrecoverable error
r - the evidence for the miatching of edges on certain image line-pairs can be both

ambiguous and highly misleading. To make a single choice at each line correlation is
clearly wrong;
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'../ .. .

Correspondence results after local line-by-line processing
Figure 6-1

0 precluding ovrselves, from a parallel realization of the correspondence mechan'.'sm
the last line would have to wait until all preceding lines were processed.

These options aren't very inviting. If we wish to include the global edge connectivity constraint with
the line-by-line analysis, then we are left, with only one satisfactory solution -a three-dimensional
matching of edges (in the sense that the approach used here is two-dimensional) on left image edges,

::, right image edges, and lines. This is not (as determined yet) an impossible job ... just incredibly
complicated and space and time consuming. It is not obvious what the monotonicity constraint
would be for the third parameter (lines), nor is it clear that the computation could be ordered so
as to be implementable in parallel while maintaining optimality (or even be partitionable). This
approach deserves future consideration, but is not dealt with further here (see [Moore 1979] for a
brief description of a higher dimensional dynamic programming algorithm).

The problems of incorporating the glV Wa with the local analysis make it clear (with the above
proviso) that the processing of line-pairs should occur independently. But how should we proceed
in using the global edge connectivity information?

[Arnold 1982] has devised a scheme for recovering sub-optimal solutions for the individual line-pair
correlations, and mak-es these alternate pairings available to a subsequent consensus forming process.
If one were to do a global optimization of all of these pairing possibilities, then this would be a valid
approach. However his analysis is local to particular connected stretches of edges.

Another suggestion is to group edges together into extendcd edges or lines, making contour continuity
explicit.. However, the general matching of extended edges, which may be fragmented, occluded, etc.,
is a problem equivalent to the matching of these locally defined e~dges, so can't be thought of as a
fundamental alternative. One o1'the main points of match*-19 edges, as opposed to larger elements, is
the redundancy of information available at this level, and thie greater noise-immunity and robustness
this brings. Consideration of' extended edges can be thought as monocular cueing for the stereopsis,
and in this sense would be complementary to local edge analysis.
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The philosophy throughout the processing discussed here is, as has been stated before, to work
from more reliable signal to less reliable signal, using the results of the higher reliability analyses
to guide and constrain the less reliable ones. This attitude sets the direction for the interaction of
the line-by-line processings. The role of the first edge-based correspondence process is to provide,
if you will, edge-to-edge locking between the two images. These edge lockings will constrain the
registration of the two images. What is ,eing sought is a rough global matching of the two images
- it is not demanded that it be perfect or complete. The flexibility of this target indicates that it
would be sufficient for the processing to seek a mutually-consistent kernel of edge correspondences.
This is done by:

a) allowing line-pairs to be correlated independently, each forming its own assessment
of edge correspondences, and then

b) cooperatively removing all those correspondences which violate contour continuity.

The next section will describe the implementation of a process to remove globally inconsistent edge
correspondences.

6.1.2 - The use of the connectivitV eonstraint

Consider Figure 4-11. Each edge pairing (Ry ý4L/,) (shown as horizontal lines) has associated with

it a disparity Dispj,j. The difference in disparity between connected edges (connectivity is shown as
vertical lines) is a measure of the implied change in depth between the 3-space points represented
by the two pairs of edges. A change in disparity between connected edges that is above some
reasonable value will indicate a break in depth continuity. Except when seen from some anomalous
or coincidental viewpoint, a series of edges connected in one of the images will correspond to a
continuous bounding contour in the scene. So if there is 2-D connectivity between a series of
edges in one image then we should expect their disparities to be smoothly varying. Figure 6-2

illustrates the case of connected correlates along k stretch of edges in both images, and the case.
of disconnected correlates (which violate 3-space continuity). A measure of smoothness could be
obtained by computing the statistics of this disparity first difference distribution. This would yield
an interval [A - arDap, A + OD,.pl of acceptable disparity differences, where A is the mean of the
computed first differences, aud UDi.p is the standard deviation.

Further thought suggests that these statistics are actually not appropriate. If there are lots of
incorrect correspondences, then the [A-arUpap, p+ozL.]J interval will tend to be large. Is it reasonable
to allow disparity differences over adjacent lines greater than 1.0 (the limit of edge connectivity) to
survive? Not likely, as these indicate that the edges in one of the images cannot connect. Failing tohave simultaneous connectivity in both of the images is not necessarily a bad sign, though, as gaps

frequently occur along any edge path of a contour. The objection here is with edges that are on
adjacent lines and can't be connected because of their relative horizonual displacement. Would it be
reasonable to reject correspondences giving rise to disparity differences that are within the computed
interval but outside of the connectivity range? Yes, if they are unrealizable. What about the opposite
situation, where the standard deviation aDiop is less than 1 pixel width, with most correspondences
good. Here the interval limit will suggest excluding pairings of disparity difference somewhat lesc
than 1.0? Well, after a little thought it becomes clear that the 3-space consistency process should
not use these statistical measures, but rather employ a simple distance measure which would prevent
discontinuous edges from being matched to the same structure. If the horizontal separation of edges
on adjacent image lines exceeds this measure (chosen to be a single pixel width, ODiap -- 1.0), then
the two edges cannot be joined in depth. It is important to note that this puts a limit on the
inclination of edges to the line of sight ... connected edges must be discernab:. as connected within
the 2-space imaging resolution for them to be accepted by the matcher as connected in 3-space.
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Figure 6-2

6.1.3 - Implication of large disparity differences

Identifying the incorrect edge correspondence from an inconsistent disparity difference is not an
obvious process. The problem one immediately sees is that a disparity difference outside of the
range [11 - UDisp, A + O'Disp] conclusively implicates neither of the contributing edge pairings. It
merely suggests that one of them is inconsistent. Should they both be removed to be sure that
the incorrect one is taken out? Not likely, as this conservative policy would lose too many good
correspondences in clearing out the bad ones. Consider the case in Figure 6-3 ol'a single incorrect
correspondence bounded above and below by properly assigned correspondences. The two on the
periphery could vote, and Lhrow out the offending middle correspondence. Think of this as a single-
bit error corrector.

If errors were scattered, like this, rather than systematic, then this simple voting technique would
be all that was required. However systematic errors of correspondence occur as well. Consider
a case where long strec'hes of edges in one image are deemed to correspond to some stretch of
edges in the other image, then switch en masse to correspondence with some other stretch of edges
further down the image. Figure 6-3 also depicts an occurence of this situation. The only inconsistent
disparity difference here would appear at the junction between the apparently consistently connected
stretches. In a worse case situation, a correspondence from the properly associated stretch of edges
would be removed for each correspondence incorrectly assigned to the other stretch. A good removal
strategy would be one which minimizes the loss of correct edge correspondences.
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Single and Multiple Ccrrespondence Errors
Figure 6-3

6.2 Cooperative Connectivity Enforcement Algorithm

The mechanism developed for this minimal loss strategy is as follows:

1) Flag correspondences incident on an inconsistent disparity difference as questionable.

2) If, in so flagging, the correspondence is found already to be flagged, then mark the
correspondence for removal.

3) Do 1 (and 2) until all questionable correspondences have been flagged.

4) Remove all marked correspondences and re-evaluate the disparity differences about
the newly connected edges.

5) Do 3 and 4 until no further correspondences can be marked for removal.

6) Remove all flagged correspondences.

7) Do 5 and 6 until no inconsistent correspondences remain.

This algorithm deletes a minimum of valid correspondences, and guarantees the removal of all in-
consistent disparity differences. 'Figure 6-4 shows the connectivity of Figure 6-1 after the inconsistent
correspondences have been removed by this cooperative connectivity enforcement algorithm.
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STEREO CORRELATION OF
SAMPLE IMAGERY

The best way to understand the functioning of the total stereo algorithm is no doubt through
examples of its processing. This chapter will show you, a step at a time, what is involved in the
analysis of some typical imagery and demonstrate how effectively it works.

7.1 Control Data Corporation Imagery

The input to the process is a pair of collinearized stereo images, as s'-own in Figure 7-1 intensity
enhanced. Scan lines in these images correspond to epipolar lines. The stereo pair was created
to demonstrate graphics capability rather than to serve as data for a stereo correlator, so exhibits
several unappreciated characteristics - it has multiple light sources (making the projections of
certain structural edges appear to be discontinuous), and has in effect zero random sensor noise (all
noise is from the sampling and quantization).

The standard deviation in intensity variation for this imagery was sampled and estimated as being
0.596, indicating that any first difference above 0.596Vý -- = 0.840 should be considered to be signal
rather than noise. Because of this low noise measure, the reduced resolution matching does not
go beyond a single reduction. Figurcs 7-2 and 7-3 show the full resolution and reduced resolution
(T = 1) edges found for this imagery' Figure 7-4 shows the connectivity between the various edges
of these two images (recall that edge connectivity plays a part in the global consistency analysis).
Figure 7-5 is a broadened depiction of the intensities along a pair of corresponding lines of this
imagery while Figure 7-6 shows the full and reduced resolution edges found along these lines. The

A stereo pair of images (from Control Data Corporation) [256 X 256 X 6]
Figure 7-1
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and right sides of the edges, and horizontally sloping lines show the interpoiated intensity gradients

in the intervals between image edges. Diagonal marks in the upper profile of the figure indicate
edges paired by the reduced resolution matching.
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Full resolution edtges of the stereo pair

Figure 7-2
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- Reduced resolution edges of the stereo pair
Figure 7-3

N 'p



Sample imagery §7.1 67

....... .. ...

Connectivity of the edges of the stereo pair
Figure 7-4
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Right and Left image corresp onding line intensities
Figure 7-5
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Edges of this line-pair at full and reduced resolutions
Figure 7-6
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The reduced resolution and full resolution edge matchings process line-pairs such as these, deter-
mining the best line-by-line correspondences. Figure 7-7 shows the results of this processing for the
CDC imagery. The depiction may be difficult to understand:

0 The left figure shows the edges of the left image, drawn with their connectivity(a
Figure 7-4 left), but rather than using the coordinate of the left image edges, uses the
coordinates of their mates in the right image (this is equivalent to using the coordinate
plus associated disparity).

* The right figure shows the edges of the right image, drawn with their connectivity
(again, Figure 7-4 right), but rather than using the coordinates of the right image
edges, uses the coordinates of their mates in the left image (which is the same as the
coordinate minus associated disparity).

* Since the lines joining connected edges are all that are being drawn, if two adjacently
connected edges in one image, for example the left, are found to match two unconnected
edges in the other image, then the line joining them in the left figure will run (nearly
horizontally) as though between the two disparate edge coordinates. What this reveals,
and reveals quite clearly, is the correlation's decision that there is a variation in depth
between the two matched pairs of edges. In general, horizontal lines suggest errors in
the correlation (notice that there are relatively few in this depiction).

Z. .. .... .

Preliminary matching results
Figure 7-7

The cooperative process that ensures global consistency removes inconsistent matches, propagates
* disparities along connected edge paths, and results in a kernel of sound correspondences. These final

edge-based matching results a, e shown in Figure 7-8. The figures are drawn in the manner of Figure
* 7-7. The stereo depiction of Figure 7- is a perspective view of the connectivity shown in Figure 7-8

(which was shown there from directly overhead).
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Final (post-connectivity constraint) matching results
3000 half-edge correlate pairs

Figure 7-8

Perspective view of conn ected edge elements
Figure 74t

ý4 In the phrasing used earlier, the matching results at this stage form a template of constraints for the
next stage of the processing. Considering the edge-based correspondences on a line-by-line basis, we
can think of the edge matchings &a; defining ;>. local mapping of intervals between the two images.
Edges in the corresponding intervals that have not been assigned matches by the prior correspondence
process are candidates for matching within this more tightly constrained context. The processing of

-_
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an interval-constrained edge-based matching completes edge matching in the intervals, and a final
correlation, using the intensity values of the pixels themselves, interval-constrained intensity.basedcorrelation, determines pixel to pixel correspondences. Figures 7-10 and 7-12 show the matching
of edges attained through the edge-based correlation for several image line-pairs. Original edge
correspondences are indki-ted by arrows -- and --, where the left arrow positions a right half-edge
and the right arrow positions a left half-edge; subsequent. interval-constrained edge correspondences
are indicated by >land 1<. Individual comments appear on the figures themselves. An interpolated
disparity representation of these same graphs can be seen in Figures 7-11 and 7-13 (this display Is
perspective, so verticals have varying horizontal components).

.- 1-

position--M

Edge c---- preliminary edge matches

d o n -. subsequent edge matches)
Fignre 7-10

:102

4660

0.

4 LL4J.....LL.. •._LL.L . .. ..R? I•' .... ~ •. ... i . .. ,ce.... , ,,,

position-+

Interpolated disparities
Figure 7-11
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Edge correspondences
Figure 7-12

I I 1~211

position--ý

Interpolated disparities
The surface slope between the second and third double arrows arises for the same reasons
am it did in Figure 5-9.

Figure 7-13

Figure 7-14 shows the full image array disparity map - the result of the processing of the four
correlations:

1) reduced resolution edges,

2) full resolution edges,
3) interval-constrained edges,

4) interval-constrained pixels.

The depiction is again perspective, and shown from the point of view of the right CDC image.
Without knowing the camera parameters, or at least the relationship between the two sets of camera
parameters, there is no possibility of transforming the representation to an orthographic form. I
do, however, have an interactive program that allows estimates to be made on the transformation,
and this produced the orthographic correction for the perspective stereo plot of Figure 7-15 (which
is a half resolution depiction --- Figure 7-14 was smoothed and sampled at one third resolution
for increased clarity). Figure 7-16 is a monocular depiction of the perspective projection at full
resolution.
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Perspective view of final edge and intensity correlation - CDC
(the a axis is disparity, not elevation)

The left side of the low building in the upper center, and the far left top side of the
nearest building (the hollow one) show incorrect burface slojt.i (as in Figures 5-9 and
7-13). The near left top side of the same hollow building extends too far, running to
the edge of the inmage. Again, the Intensities alone do not provide sufficient information
for a correct positioning of these surfaces (they should be in the ground plane). More
global surface information is available, although unused here, and this will provide better
positioning constraints when further refinements are made to the intem.ity correlation
algorithm.

Figure 7-14

iL
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I

Full resolution CDC plot (of Figure 7-14) before orthogonalizing
"Figure 7-16
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7.2 Night Vision Laboratory Imagery

Another example of the stereo processing is shown in Figures 7-17 through 7-35. The imagery
depicted here, a valley scene recorded on videotape, was provided by the Night Vision Laboratory
of the United States Army. The scene is synthetic in that it is a papier-mich6 recreation of an
actual valley, although the imaging is real. There is very little relief in the scene, although it has
a general drift to higher elevations toward the upper left corner. There is only slight difference
in height between the river (running through the centre across the images) and the various land
and vegetation areas. Figure 7-17 shows the stereo pair at full resolution, while Figures 7-18, 7-19
and 7-20 show the three resolution reductions (reduced to the limit for noise suppression). Figure
7-2i shows the edges determined for the full resolution image, and Figure 7-22 shows the edges
determined by the largest convoWution operator for the most reduced resolution image (Figure 7-20).

ql Figure 7-23 depicts the edge coxinectivity for the full resolution images.

Noise and signal characteristics for this set of data are significantly different from those of the
synthetically imaged CDC data. There is a great deal of small scale structure in the scene. The
standard deviation of intensity variation was 25.603 here, with a standard deviation in first difference
of 25.603v/ = 38.0. These measures account for the three levels of resolution reduction required
to bring the noise down to an acceptable level. Figure 7-24 is a stereo plot of the intensity values
of the left image of this pair (yet another interesting figure for the cross-eyed stereo freaks), with
intensity being the z component of the plot. It's startling just how much local intensity variation
there is in these images. For comparison, Figure 7-25 shows a similar plot for the CDC data.

" ~NVL stereo pair of images -- natural terrain [168 X 200 X 9)
Figure 7-17

4.!
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First resolution reduction
Figure 7-18

V Second resolution reduction
Figure 7-19

Third resolution reduction
Figure 7- 20
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Figure 7-22
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Stereo plot of NVL image intensity
Figure 7-24

Stereo plot of CDC image intensity
Figure 7-25
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The next figure, Figure 7-26, shows the intensities and edges found along a single pair of correspond-
ing lines in the successive resolution reductions of this imagery. Reduced resolution correspondences
are found among edges in the bottom two figures, and these are then mapped up, through the
intermediate resolution edges, to the full resolution edges at the top of the pair of figures. Full
resolution correlation is then performed on the edges defined within corresponding intervals.

0
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Right and Left image line successive resolution reductions
Figure 7-26

Figure 7-27 shows the top line of Figure 7-26 with half-edge indices marked. The reduced resolution
correlation pairs edges:

{ (14, 26), (32,44), (40,52), (50, 60), (62,72), (70, 100) }

The full resolution correlation takes these correspondences, defining intervals for matching, and
determines the pairings:

((3, 15), (4, 16), (5,17), (6,20), (7,21), (10, 22), (11,23), (12, 24),(13, 25), (14, 26),
(15,27), (16,30), (17,31), (20, 32), (21, 33), (24, 34),(25, 35), (26, 36), (27,37),

(30,40), (31,41), (32, 44), (33,45), (34, 46),(35, 47), (36, 50), (37,51), (40,52),
(41,53), (42, 54), (43, 55), (44, 56),(45, 57), (50, 60), (51,61), (52,62), (53, 63),

(54, 64), (55, 65), (56, 66),(57, 67), (66, 76), (67, 77), (70,100), (71, 105),
(72,106), (76, 110),(77, 111), (100,112), (101, 113), (102,114), (111, 115) }

.., , .L - '
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Final (post-connectivity constraint) edge-based results
S700 hal!-edge correlate pa*rs

Figure 7-29

Perspective view of connected edge elements
Figure 7-30

The correlation results at this stage form a template of constraints for the next stage of the processing,
in which the interval-constrained edge-based and the interval-constrained intensity-based matchings

attempt to complete the disparity array. Figures 7-31 and 7-33 show the correspondence of edges
and disparities attained through these matchings for two sample image line-pairs. The depiction
is identical to that of Figures 7-10 and 7-12, where the two types of edge mappings. were indicated
by the two different sorts of arrowheads. The intensity interpolation on these lines can be seen in
Figures 7-32 and 7-34 (again, these displays are perspective, so verticals have varying horizontal
components, but this isn't noticeable with the rolling nature of the terrain).



K DEpth fom Edge and Intensty Basd Sereo

.45 .45

T34 14+!t4-•34

3et 4..
"26 2"

0.2362oo

15 90 60 110 140 170 220 250 30 15 3 IN 110 140 170 22 250 30
ILUILLLLJ1.101ttJ IIA I iii 'l I.LUL.lJLIL11I lutI . ....LLLLLL i .U.tILLI uiii 11 LI.lL.1.1~.I.I.IJIJLLLUII ILLUIILLUJI.IIILI

position-* pos011on--+

Edge (orrespondences 4--- preliminary edge matches)
this intsubsequent edge matches Interpolated dispnritnies

Figure 7-31 Figure 7-32

42 42

mde onrsoncuaviwothfulrsltnresulntsefthsproa esdspaing.s

34r 4r

P4 p-n

•,L 0 ,:_ LJ A J III , , - . 1J.-,., . . .M 1 I.., .. I 1 - . . . ...... .1., 1.. . . , .U . .I I . ... 1L .L I .•..UU 41 " L ... . -U...I

poiin s olin

L-7



NN

m.l

tI1

!•0

i' i.- •,., ,2• ' ii ,'. .'2 .. i• ' 2 .. , . . . . • .



84 Depth from Edge and Intensity Bas.ed Stereo

Full resolution N-VL plot (of Figure 7-35)
Figure 7-36
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Chapter 8

SUMMARY
AND

CONTRIBUTIONS TO THE FWELD

8.1 FNurther Conaideratione
Recall that the goals of this research were to develop a robust, domain independent stereo vision

algorithm - one with a structure that would lend itself to a parallel realization.
[Robustness] The use of a line-by-line coarse-to-fine analysis capitalizing on the redun-

"dancy and broad frequency spectrum of grey-scale imagery and the accompany-
ing inter-line global constraints provide for high noise-immunity, recovery from
local correspondence errors, consistency at the level of global interpretation, and
graceful degradation.

[Domain Independence] The examples shown in chapter 7 are from disparate domains.
Having no monocular predispositions, beyond the dealing with edges, the system
has nothing in it to bias the analysis toward a particular domain. Probabilistic
measures used are those of general situations (although those for specific domains
could be introduced if they were known and applicable). Testing on further
imagery is expected W confirm the generality of the algorithm.

[Parallel Implementable] Estimates based on the run times of the two examples of
chapter 7 suggest that the analysis proceeds at about 3 lines per second. It is thus
expected that a parallel implementation on n processors, fairly straightforward
algorithmically from the current organization, would require something less than
0.5 seconds for an n-line by 256 element analysis with processors of the power
of a DEC KL-10. A mogre likely early realization would be with something more
modest, perhaps a successor of [Marks 1980], [Burr 1981], or [Lowry 1981].

More work is needed before this algorithm is ready for use in an integrated system. Primarily, more
imagery data is needed in testing and demonstrating the comprehensiveness of the algorithm. The

imagery shown in chapter 7 is a good beginning at indicating the power of the processing, but it can
only suggcst the potential - a broader and fuller image sampiing is needed to be convincing of its
generality.

Empirical analysis must also be made of the accuracy of the correlation atgorithm. Digital ter-
rain models (DTM's) with accompanying digital stereo imagery could provi;, e the needed accuracy
benchmarks for this. Unfortunately, acquiring DTM stereo imagery and databases has been prob-
lematic enough that 1 have not been able to include such an analysis in this reyort. Further work
with this algorithm will certainly involve digital terrain model studies.

The set of parameters chosen for the various correlations should also be re-examined and perhaps
augmented. Colour information may well be an extremely important addition to this. Although
it has been shown through research with isoluminance that colour does not play a part in human
primary stereopsis ([Gregory 1977]), there is no information-theoretic reason for so exclud.ng it from

,. .,a mechanized vision system. [Gregory 1977] points out that colour does functioa as a stimulus to
'contour' stereo --' the stereo from monocular cues, and my suspicion is that it will be a very powerful

i .disambiguation metric for either correspondence Process.

Refinement is needed in the spatial sampling used in both the resolution reduction and the lateral
inhibition processes. This is of importance primarily for the resolution reductions, as the particular



86 Depth from Edge and Intensity Based Stereo

lateral inhibition operation implemented here is an artefact of the edge operator used which itself
will surely be replaced by one with a better foundation ([Binford 1981]). Further two-dimensional
analysis will also be needed in improving the constrained-interval intensity correlation. The errors
seen in Figures 7-10 through 7-15 can be traced nearly without exception to the local line-by-line
nature of its correlation. Much improvement with this is possible and expected were a more global
analysis to be carried out.

*' 8.2 Application of the Analysis

"The research does not end with the development of an algorithm suen as this. It is not a stand-
alone process, but rather must serve as a provider of three-dimensional data for the modelling and
recognition processes of a total machine vision system. Reference was made earlier to the importance
of interfacing this sort of depth analysis to an object modelling system such as ACRONYM ([Brooks
1981b]). Reliable and accurate depth measurements would provide a new and invaluable capacity
to the modelling system. Of course there are still many issues to be looked into for this. A few of
the more obvious are:

e How is the depth map to be segmented for structure matching?
* What shape primitives are to be abstracted from thi dense 3-space descriptions for

object representation?
* Will the modelling scheme be able to direct the stereopsis process, suggesting

monocular cues to guide the matching or providing cues to scene structure from the
results of previous analyses?

Regardless of .. e path chosen for the ihplementation, the marriage of modelling and stereo analysis
will come about - the benefits, if not mere necessity, of depth analysis makes this clear. A modelling
system that can sense the world in 3-D can not only make better judgements about its environment,
it can actively model that environment, forming solid descriptions of everything it encounters. The
modelling will be able to do as we do - pick objects up, turn them about before its eyes, observe
their static and dynamic characteristics, note similarities and differences with other objects seen
and modelled before - doing all this on the basis of three-dimensional spatial structure. It is thig
generative aspect that makes the most exciting contribution to the modelling - objects will be
modelled by being observed, with perhaps only the finest calibration measurements being added to
the description manually. No longer would there be the necessity for object hand measurements and
hand entry of object descriptors.

The automated stereopsis of this system will also bring advantage to terrain modelling and mapping.
Its ability to handle both rolling terrain and the discontinuities of cultural site structures makes it
applicable over a range of sensing situations not approached by current terrain mapping systems.

The most exciting aspects of vision research still lie ahead - at a sensing level, the incorporation
of colour and monocular cueing and enhanced global analysis; at the level of segmentation, the
recognition and clustering of surface shape primitives for coherent symbolic descriptiun; at the
modelling level, the further extension or redesign of representational schemes to use this three-
dimensional data; at the meta-modelling level, consideration of ways to descrtbe shape and objects
that will most effectively allow their recognition and manipulation.
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